对含有 SIRT3 抑制剂的 2-苯基喹啉-4-羧酸进行结构修饰,用于癌症分化治疗。

IF 3.2 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemical Biology & Drug Design Pub Date : 2024-07-31 DOI:10.1111/cbdd.14595
Yanmei Du, Xiaojing Wang, Lihui Zhang, Hongyu Qin, Guangzhao Xu, Fahui Li, Chunyan Fang, Honggang Li, Lei Zhang
{"title":"对含有 SIRT3 抑制剂的 2-苯基喹啉-4-羧酸进行结构修饰,用于癌症分化治疗。","authors":"Yanmei Du,&nbsp;Xiaojing Wang,&nbsp;Lihui Zhang,&nbsp;Hongyu Qin,&nbsp;Guangzhao Xu,&nbsp;Fahui Li,&nbsp;Chunyan Fang,&nbsp;Honggang Li,&nbsp;Lei Zhang","doi":"10.1111/cbdd.14595","DOIUrl":null,"url":null,"abstract":"<p>Inhibition of SIRT3 exhibited potency in triggering leukemic cell differentiation. In discovery of potent SIRT3 inhibitors for cancer differentiation therapy, structural modification was performed on the previously developed lead compound <b>P6</b>. A total of 33 compounds were designed and synthesized. In the enzyme inhibitory assay, several molecules <b>S18</b>, <b>S26</b>, <b>S27</b> and <b>T5</b> showed potent SIRT3 inhibitory activity with IC<sub>50</sub> value of 0.53, 1.86, 5.06, and 2.88 μM, respectively. Moreover, the tested compounds exhibited SIRT3 inhibitory selectivity over SIRT1 and SIRT2. Compounds <b>S27</b> and <b>T5</b> were potent in inhibition the growth of MM1.S and RPMI-8226 cells in the in vitro antiproliferative test. Significantly, representative compounds, especially <b>S27</b> and <b>T5</b>, promoted differentiation of tested MM cells in the cellular morphological evaluation, accompanied by increasing the expression of differentiation antigen CD49e and human immunoglobulin light chain lambda and kappa. Additionally, molecule <b>S18</b> without antiproliferative potency itself, showed significant inhibitory activity against growth factor IL-6 induced RPMI-8226 cell proliferation. Collectively, potent SIRT3 selective inhibitors with MM cell differentiation potency were developed for further discovery of anticancer drugs.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"104 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural modification of 2-phenylquinoline-4-carboxylic acid containing SIRT3 inhibitors for the cancer differentiation therapy\",\"authors\":\"Yanmei Du,&nbsp;Xiaojing Wang,&nbsp;Lihui Zhang,&nbsp;Hongyu Qin,&nbsp;Guangzhao Xu,&nbsp;Fahui Li,&nbsp;Chunyan Fang,&nbsp;Honggang Li,&nbsp;Lei Zhang\",\"doi\":\"10.1111/cbdd.14595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inhibition of SIRT3 exhibited potency in triggering leukemic cell differentiation. In discovery of potent SIRT3 inhibitors for cancer differentiation therapy, structural modification was performed on the previously developed lead compound <b>P6</b>. A total of 33 compounds were designed and synthesized. In the enzyme inhibitory assay, several molecules <b>S18</b>, <b>S26</b>, <b>S27</b> and <b>T5</b> showed potent SIRT3 inhibitory activity with IC<sub>50</sub> value of 0.53, 1.86, 5.06, and 2.88 μM, respectively. Moreover, the tested compounds exhibited SIRT3 inhibitory selectivity over SIRT1 and SIRT2. Compounds <b>S27</b> and <b>T5</b> were potent in inhibition the growth of MM1.S and RPMI-8226 cells in the in vitro antiproliferative test. Significantly, representative compounds, especially <b>S27</b> and <b>T5</b>, promoted differentiation of tested MM cells in the cellular morphological evaluation, accompanied by increasing the expression of differentiation antigen CD49e and human immunoglobulin light chain lambda and kappa. Additionally, molecule <b>S18</b> without antiproliferative potency itself, showed significant inhibitory activity against growth factor IL-6 induced RPMI-8226 cell proliferation. Collectively, potent SIRT3 selective inhibitors with MM cell differentiation potency were developed for further discovery of anticancer drugs.</p>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"104 2\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14595\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14595","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抑制 SIRT3 能有效引发白血病细胞分化。为了发现用于癌症分化治疗的强效 SIRT3 抑制剂,我们对之前开发的先导化合物 P6 进行了结构改造。共设计并合成了 33 种化合物。在酶抑制实验中,几个分子 S18、S26、S27 和 T5 显示出了强效的 SIRT3 抑制活性,IC50 值分别为 0.53、1.86、5.06 和 2.88 μM。此外,受试化合物对 SIRT1 和 SIRT2 具有抑制 SIRT3 的选择性。在体外抗增殖试验中,化合物 S27 和 T5 能有效抑制 MM1.S 和 RPMI-8226 细胞的生长。值得注意的是,在细胞形态学评估中,代表性化合物,尤其是 S27 和 T5,促进了受测 MM 细胞的分化,同时增加了分化抗原 CD49e 和人免疫球蛋白轻链 lambda 和 kappa 的表达。此外,分子 S18 本身不具有抗增殖效力,但对生长因子 IL-6 诱导的 RPMI-8226 细胞增殖具有显著的抑制活性。总之,我们开发出了具有 MM 细胞分化效力的强效 SIRT3 选择性抑制剂,有助于进一步发现抗癌药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural modification of 2-phenylquinoline-4-carboxylic acid containing SIRT3 inhibitors for the cancer differentiation therapy

Inhibition of SIRT3 exhibited potency in triggering leukemic cell differentiation. In discovery of potent SIRT3 inhibitors for cancer differentiation therapy, structural modification was performed on the previously developed lead compound P6. A total of 33 compounds were designed and synthesized. In the enzyme inhibitory assay, several molecules S18, S26, S27 and T5 showed potent SIRT3 inhibitory activity with IC50 value of 0.53, 1.86, 5.06, and 2.88 μM, respectively. Moreover, the tested compounds exhibited SIRT3 inhibitory selectivity over SIRT1 and SIRT2. Compounds S27 and T5 were potent in inhibition the growth of MM1.S and RPMI-8226 cells in the in vitro antiproliferative test. Significantly, representative compounds, especially S27 and T5, promoted differentiation of tested MM cells in the cellular morphological evaluation, accompanied by increasing the expression of differentiation antigen CD49e and human immunoglobulin light chain lambda and kappa. Additionally, molecule S18 without antiproliferative potency itself, showed significant inhibitory activity against growth factor IL-6 induced RPMI-8226 cell proliferation. Collectively, potent SIRT3 selective inhibitors with MM cell differentiation potency were developed for further discovery of anticancer drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
期刊最新文献
Novel Hydrazide-Hydrazones Bearing a Benzimidazole Ring: Design, Synthesis, and Evaluation of Inhibitor Properties Against CA I and CA II Isozymes Cover Image Edaravone Ameliorate Inflammation in Vitamin D3 and High Fat Diet Induced Atherosclerosis in Rat via Alteration of Inflammatory Pathway and Gut Microbiota Herbacetin Inhibits Human Fructose 1,6-Bisphosphatase Among a Panel of Chromone Derivatives and Pyrazoles, Demonstrating Positive Effects on Insulin-Resistant HepG2 Cells Innovative Photoprotection Strategy: Development of 2-(Benzoxazol-2-Yl)[(2-Hydroxynaphthyl)Diazenyl] Phenol Derivatives for Comprehensive Absorption of UVB, UVA, and Blue Light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1