大系数模型的图形凝缩

Pub Date : 2024-07-31 DOI:10.1134/S1064562424702090
B. N. Chetverushkin, V. A. Sudakov, Yu. P. Titov
{"title":"大系数模型的图形凝缩","authors":"B. N. Chetverushkin,&nbsp;V. A. Sudakov,&nbsp;Yu. P. Titov","doi":"10.1134/S1064562424702090","DOIUrl":null,"url":null,"abstract":"<p>An original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks is developed. The proposed mathematical apparatus can be used to plan and manage complex organizational and technical systems, to optimize large socioeconomic objects of national scale, and to solve problems of preserving the health of the nation (searching for compatibility of medications and optimizing health care resources).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Condensation for Large Factor Models\",\"authors\":\"B. N. Chetverushkin,&nbsp;V. A. Sudakov,&nbsp;Yu. P. Titov\",\"doi\":\"10.1134/S1064562424702090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks is developed. The proposed mathematical apparatus can be used to plan and manage complex organizational and technical systems, to optimize large socioeconomic objects of national scale, and to solve problems of preserving the health of the nation (searching for compatibility of medications and optimizing health care resources).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424702090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用机器学习模型和人工神经网络,开发了一种基于图浓缩的处理大型因素模型的独创方法。所提出的数学装置可用于规划和管理复杂的组织和技术系统,优化国家规模的大型社会经济对象,以及解决维护国民健康的问题(寻找药物的兼容性和优化医疗资源)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Graph Condensation for Large Factor Models

An original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks is developed. The proposed mathematical apparatus can be used to plan and manage complex organizational and technical systems, to optimize large socioeconomic objects of national scale, and to solve problems of preserving the health of the nation (searching for compatibility of medications and optimizing health care resources).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1