{"title":"大系数模型的图形凝缩","authors":"B. N. Chetverushkin, V. A. Sudakov, Yu. P. Titov","doi":"10.1134/S1064562424702090","DOIUrl":null,"url":null,"abstract":"<p>An original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks is developed. The proposed mathematical apparatus can be used to plan and manage complex organizational and technical systems, to optimize large socioeconomic objects of national scale, and to solve problems of preserving the health of the nation (searching for compatibility of medications and optimizing health care resources).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Condensation for Large Factor Models\",\"authors\":\"B. N. Chetverushkin, V. A. Sudakov, Yu. P. Titov\",\"doi\":\"10.1134/S1064562424702090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks is developed. The proposed mathematical apparatus can be used to plan and manage complex organizational and technical systems, to optimize large socioeconomic objects of national scale, and to solve problems of preserving the health of the nation (searching for compatibility of medications and optimizing health care resources).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424702090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424702090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks is developed. The proposed mathematical apparatus can be used to plan and manage complex organizational and technical systems, to optimize large socioeconomic objects of national scale, and to solve problems of preserving the health of the nation (searching for compatibility of medications and optimizing health care resources).