HOBOTAN:利用张量网络和 PyTorch 的高效高阶二进制优化求解器

Shoya Yasuda, Shunsuke Sotobayashi, Yuichiro Minato
{"title":"HOBOTAN:利用张量网络和 PyTorch 的高效高阶二进制优化求解器","authors":"Shoya Yasuda, Shunsuke Sotobayashi, Yuichiro Minato","doi":"arxiv-2407.19987","DOIUrl":null,"url":null,"abstract":"In this study, we introduce HOBOTAN, a new solver designed for Higher Order\nBinary Optimization (HOBO). HOBOTAN supports both CPU and GPU, with the GPU\nversion developed based on PyTorch, offering a fast and scalable system. This\nsolver utilizes tensor networks to solve combinatorial optimization problems,\nemploying a HOBO tensor that maps the problem and performs tensor contractions\nas needed. Additionally, by combining techniques such as batch processing for\ntensor optimization and binary-based integer encoding, we significantly enhance\nthe efficiency of combinatorial optimization. In the future, the utilization of\nincreased GPU numbers is expected to harness greater computational power,\nenabling efficient collaboration between multiple GPUs for high scalability.\nMoreover, HOBOTAN is designed within the framework of quantum computing, thus\nproviding insights for future quantum computer applications. This paper details\nthe design, implementation, performance evaluation, and scalability of HOBOTAN,\ndemonstrating its effectiveness.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch\",\"authors\":\"Shoya Yasuda, Shunsuke Sotobayashi, Yuichiro Minato\",\"doi\":\"arxiv-2407.19987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce HOBOTAN, a new solver designed for Higher Order\\nBinary Optimization (HOBO). HOBOTAN supports both CPU and GPU, with the GPU\\nversion developed based on PyTorch, offering a fast and scalable system. This\\nsolver utilizes tensor networks to solve combinatorial optimization problems,\\nemploying a HOBO tensor that maps the problem and performs tensor contractions\\nas needed. Additionally, by combining techniques such as batch processing for\\ntensor optimization and binary-based integer encoding, we significantly enhance\\nthe efficiency of combinatorial optimization. In the future, the utilization of\\nincreased GPU numbers is expected to harness greater computational power,\\nenabling efficient collaboration between multiple GPUs for high scalability.\\nMoreover, HOBOTAN is designed within the framework of quantum computing, thus\\nproviding insights for future quantum computer applications. This paper details\\nthe design, implementation, performance evaluation, and scalability of HOBOTAN,\\ndemonstrating its effectiveness.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了专为高阶二元优化(HOBO)设计的新型求解器 HOBOTAN。HOBOTAN 同时支持 CPU 和 GPU,其中 GPU 版本基于 PyTorch 开发,提供了一个快速、可扩展的系统。该求解器利用张量网络求解组合优化问题,采用 HOBO 张量映射问题并根据需要执行张量收缩。此外,通过结合张量优化批处理和基于二进制的整数编码等技术,我们大大提高了组合优化的效率。此外,HOBOTAN 是在量子计算的框架内设计的,从而为未来的量子计算机应用提供了启示。本文详细介绍了 HOBOTAN 的设计、实现、性能评估和可扩展性,展示了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch
In this study, we introduce HOBOTAN, a new solver designed for Higher Order Binary Optimization (HOBO). HOBOTAN supports both CPU and GPU, with the GPU version developed based on PyTorch, offering a fast and scalable system. This solver utilizes tensor networks to solve combinatorial optimization problems, employing a HOBO tensor that maps the problem and performs tensor contractions as needed. Additionally, by combining techniques such as batch processing for tensor optimization and binary-based integer encoding, we significantly enhance the efficiency of combinatorial optimization. In the future, the utilization of increased GPU numbers is expected to harness greater computational power, enabling efficient collaboration between multiple GPUs for high scalability. Moreover, HOBOTAN is designed within the framework of quantum computing, thus providing insights for future quantum computer applications. This paper details the design, implementation, performance evaluation, and scalability of HOBOTAN, demonstrating its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1