基于田口的优化神经网络架构新方法:应用于弹性短纤维复合材料

Mohammad Hossein Nikzad, Mohammad Heidari-Rarani, Mohsen Mirkhalaf
{"title":"基于田口的优化神经网络架构新方法:应用于弹性短纤维复合材料","authors":"Mohammad Hossein Nikzad, Mohammad Heidari-Rarani, Mohsen Mirkhalaf","doi":"arxiv-2407.19802","DOIUrl":null,"url":null,"abstract":"This study presents an innovative application of the Taguchi design of\nexperiment method to optimize the structure of an Artificial Neural Network\n(ANN) model for the prediction of elastic properties of short fiber reinforced\ncomposites. The main goal is to minimize the required computational effort for\nhyperparameter optimization while enhancing the prediction accuracy. Utilizing\na robust design of experiment framework, the structure of an ANN model is\noptimized. This essentially is the identification of a combination of\nhyperparameters that yields an optimal predictive accuracy with the fewest\nalgorithmic runs, thereby achieving a significant reduction of the required\ncomputational effort. Our findings demonstrate that the Taguchi method not only\nstreamlines the hyperparameter tuning process but also could substantially\nimprove the algorithm's performance. These results underscore the potential of\nthe Taguchi method as a powerful tool for optimizing machine learning\nalgorithms, particularly in scenarios where computational resources are\nlimited. The implications of this study are far-reaching, offering insights for\nfuture research in the optimization of different algorithms for improved\naccuracies and computational efficiencies.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel Taguchi-based approach for optimizing neural network architectures: application to elastic short fiber composites\",\"authors\":\"Mohammad Hossein Nikzad, Mohammad Heidari-Rarani, Mohsen Mirkhalaf\",\"doi\":\"arxiv-2407.19802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an innovative application of the Taguchi design of\\nexperiment method to optimize the structure of an Artificial Neural Network\\n(ANN) model for the prediction of elastic properties of short fiber reinforced\\ncomposites. The main goal is to minimize the required computational effort for\\nhyperparameter optimization while enhancing the prediction accuracy. Utilizing\\na robust design of experiment framework, the structure of an ANN model is\\noptimized. This essentially is the identification of a combination of\\nhyperparameters that yields an optimal predictive accuracy with the fewest\\nalgorithmic runs, thereby achieving a significant reduction of the required\\ncomputational effort. Our findings demonstrate that the Taguchi method not only\\nstreamlines the hyperparameter tuning process but also could substantially\\nimprove the algorithm's performance. These results underscore the potential of\\nthe Taguchi method as a powerful tool for optimizing machine learning\\nalgorithms, particularly in scenarios where computational resources are\\nlimited. The implications of this study are far-reaching, offering insights for\\nfuture research in the optimization of different algorithms for improved\\naccuracies and computational efficiencies.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究创新性地应用了田口试验设计法来优化人工神经网络(ANN)模型的结构,以预测短纤维增强复合材料的弹性性能。其主要目标是在提高预测精度的同时,最大限度地减少超参数优化所需的计算量。利用稳健的实验设计框架,对 ANN 模型的结构进行优化。这主要是指确定一个参数组合,以最少的算法运行次数获得最佳预测精度,从而显著减少所需的计算工作量。我们的研究结果表明,田口方法不仅简化了超参数调整过程,还能大幅提高算法性能。这些结果凸显了田口方法作为优化机器学习算法的强大工具的潜力,尤其是在计算资源有限的情况下。这项研究意义深远,为今后优化不同算法以提高准确性和计算效率的研究提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel Taguchi-based approach for optimizing neural network architectures: application to elastic short fiber composites
This study presents an innovative application of the Taguchi design of experiment method to optimize the structure of an Artificial Neural Network (ANN) model for the prediction of elastic properties of short fiber reinforced composites. The main goal is to minimize the required computational effort for hyperparameter optimization while enhancing the prediction accuracy. Utilizing a robust design of experiment framework, the structure of an ANN model is optimized. This essentially is the identification of a combination of hyperparameters that yields an optimal predictive accuracy with the fewest algorithmic runs, thereby achieving a significant reduction of the required computational effort. Our findings demonstrate that the Taguchi method not only streamlines the hyperparameter tuning process but also could substantially improve the algorithm's performance. These results underscore the potential of the Taguchi method as a powerful tool for optimizing machine learning algorithms, particularly in scenarios where computational resources are limited. The implications of this study are far-reaching, offering insights for future research in the optimization of different algorithms for improved accuracies and computational efficiencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1