通过张量列车格式实现高效计算同质化

Yuki Sato, Yuto Lewis Terashima, Ruho Kondo
{"title":"通过张量列车格式实现高效计算同质化","authors":"Yuki Sato, Yuto Lewis Terashima, Ruho Kondo","doi":"arxiv-2407.18870","DOIUrl":null,"url":null,"abstract":"Real-world physical systems, like composite materials and porous media,\nexhibit complex heterogeneities and multiscale nature, posing significant\ncomputational challenges. Computational homogenization is useful for predicting\nmacroscopic properties from the microscopic material constitution. It involves\ndefining a representative volume element (RVE), solving governing equations,\nand evaluating its properties such as conductivity and elasticity. Despite its\neffectiveness, the approach can be computationally expensive. This study\nproposes a tensor-train (TT)-based asymptotic homogenization method to address\nthese challenges. By deriving boundary value problems at the microscale and\nexpressing them in the TT format, the proposed method estimates material\nproperties efficiently. We demonstrate its validity and effectiveness through\nnumerical experiments applying the proposed method for homogenization of\nthermal conductivity and elasticity in two- and three-dimensional materials,\noffering a promising solution for handling the multiscale nature of\nheterogeneous systems.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient computational homogenization via tensor train format\",\"authors\":\"Yuki Sato, Yuto Lewis Terashima, Ruho Kondo\",\"doi\":\"arxiv-2407.18870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world physical systems, like composite materials and porous media,\\nexhibit complex heterogeneities and multiscale nature, posing significant\\ncomputational challenges. Computational homogenization is useful for predicting\\nmacroscopic properties from the microscopic material constitution. It involves\\ndefining a representative volume element (RVE), solving governing equations,\\nand evaluating its properties such as conductivity and elasticity. Despite its\\neffectiveness, the approach can be computationally expensive. This study\\nproposes a tensor-train (TT)-based asymptotic homogenization method to address\\nthese challenges. By deriving boundary value problems at the microscale and\\nexpressing them in the TT format, the proposed method estimates material\\nproperties efficiently. We demonstrate its validity and effectiveness through\\nnumerical experiments applying the proposed method for homogenization of\\nthermal conductivity and elasticity in two- and three-dimensional materials,\\noffering a promising solution for handling the multiscale nature of\\nheterogeneous systems.\",\"PeriodicalId\":501309,\"journal\":{\"name\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现实世界的物理系统,如复合材料和多孔介质,具有复杂的异质性和多尺度性,给计算带来了巨大挑战。计算均质化有助于从微观材料构成预测宏观特性。它包括定义代表性体积元素(RVE)、求解控制方程并评估其特性,如传导性和弹性。尽管这种方法很有效,但计算成本很高。本研究提出了一种基于张量-列车(TT)的渐近均质化方法来解决这些难题。通过在微观尺度上推导边界值问题并以 TT 格式表达这些问题,所提出的方法可以高效地估计材料特性。我们通过数值实验证明了该方法的有效性,并将所提出的方法应用于二维和三维材料的热导率和弹性的均质化,为处理异构系统的多尺度特性提供了一种有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient computational homogenization via tensor train format
Real-world physical systems, like composite materials and porous media, exhibit complex heterogeneities and multiscale nature, posing significant computational challenges. Computational homogenization is useful for predicting macroscopic properties from the microscopic material constitution. It involves defining a representative volume element (RVE), solving governing equations, and evaluating its properties such as conductivity and elasticity. Despite its effectiveness, the approach can be computationally expensive. This study proposes a tensor-train (TT)-based asymptotic homogenization method to address these challenges. By deriving boundary value problems at the microscale and expressing them in the TT format, the proposed method estimates material properties efficiently. We demonstrate its validity and effectiveness through numerical experiments applying the proposed method for homogenization of thermal conductivity and elasticity in two- and three-dimensional materials, offering a promising solution for handling the multiscale nature of heterogeneous systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1