Anna Parshina, Anastasia Yelnikova, Valeria Shimbareva, Alla Komogorova, Polina Yurova, Irina Stenina, Olga Bobreshova, Andrey Yaroslavtsev
{"title":"通过基于含氟聚合物/聚苯胺复合材料的电位计传感器阵列测定药物和唾液中的四氢卡因和羟甲唑啉","authors":"Anna Parshina, Anastasia Yelnikova, Valeria Shimbareva, Alla Komogorova, Polina Yurova, Irina Stenina, Olga Bobreshova, Andrey Yaroslavtsev","doi":"10.1002/cem.3583","DOIUrl":null,"url":null,"abstract":"<p>A growing interest in dental practice in intranasal anesthesia using tetracaine and oxymetazoline dictates the need for their simultaneous determination in combination drugs and human saliva. Potentiometric multisensory systems based on perfluorosulfonic acid membranes, including polyaniline-modified ones, were developed for these purposes. A change in the distribution of the sensor sensitivity to the related analytes was achieved by variation of the conditions for concentration polarization at the membrane interface with a studied solution due to a change in the intrapore volume, nature, and availability of the sorption centers, as well as the hydrophilicity of the membrane surface that were specified by the conditions for their synthesis and subsequent hydrothermal treatment. Reversibility of the analyte sorption using the chosen conditions for regeneration provided long-term stable work of both the sensors and the calibration equations established by multivariate linear regression. The membrane modification promoted their resistance to fouling. The relative errors of the simultaneous tetracaine and oxymetazoline determination in the combination drug solutions were no greater than 7% and 11%, while in the artificial saliva solutions, they were 15% and 17%, respectively, when an array of the cross-sensitive sensors based on the composite membranes prepared by different methods was used. The analysis errors were reduced to 3%–6% when analyzing the drug and to 0.2%–6% when analyzing the artificial saliva if an array was organized with the sensors based on the membrane with the dopant and the membrane without it, due to the decreasing correlation between their responses.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of Tetracaine and Oxymetazoline in Drugs and Saliva via Potentiometric Sensor Arrays Based on Fluoropolymer/Polyaniline Composites\",\"authors\":\"Anna Parshina, Anastasia Yelnikova, Valeria Shimbareva, Alla Komogorova, Polina Yurova, Irina Stenina, Olga Bobreshova, Andrey Yaroslavtsev\",\"doi\":\"10.1002/cem.3583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A growing interest in dental practice in intranasal anesthesia using tetracaine and oxymetazoline dictates the need for their simultaneous determination in combination drugs and human saliva. Potentiometric multisensory systems based on perfluorosulfonic acid membranes, including polyaniline-modified ones, were developed for these purposes. A change in the distribution of the sensor sensitivity to the related analytes was achieved by variation of the conditions for concentration polarization at the membrane interface with a studied solution due to a change in the intrapore volume, nature, and availability of the sorption centers, as well as the hydrophilicity of the membrane surface that were specified by the conditions for their synthesis and subsequent hydrothermal treatment. Reversibility of the analyte sorption using the chosen conditions for regeneration provided long-term stable work of both the sensors and the calibration equations established by multivariate linear regression. The membrane modification promoted their resistance to fouling. The relative errors of the simultaneous tetracaine and oxymetazoline determination in the combination drug solutions were no greater than 7% and 11%, while in the artificial saliva solutions, they were 15% and 17%, respectively, when an array of the cross-sensitive sensors based on the composite membranes prepared by different methods was used. The analysis errors were reduced to 3%–6% when analyzing the drug and to 0.2%–6% when analyzing the artificial saliva if an array was organized with the sensors based on the membrane with the dopant and the membrane without it, due to the decreasing correlation between their responses.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3583\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3583","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
Determination of Tetracaine and Oxymetazoline in Drugs and Saliva via Potentiometric Sensor Arrays Based on Fluoropolymer/Polyaniline Composites
A growing interest in dental practice in intranasal anesthesia using tetracaine and oxymetazoline dictates the need for their simultaneous determination in combination drugs and human saliva. Potentiometric multisensory systems based on perfluorosulfonic acid membranes, including polyaniline-modified ones, were developed for these purposes. A change in the distribution of the sensor sensitivity to the related analytes was achieved by variation of the conditions for concentration polarization at the membrane interface with a studied solution due to a change in the intrapore volume, nature, and availability of the sorption centers, as well as the hydrophilicity of the membrane surface that were specified by the conditions for their synthesis and subsequent hydrothermal treatment. Reversibility of the analyte sorption using the chosen conditions for regeneration provided long-term stable work of both the sensors and the calibration equations established by multivariate linear regression. The membrane modification promoted their resistance to fouling. The relative errors of the simultaneous tetracaine and oxymetazoline determination in the combination drug solutions were no greater than 7% and 11%, while in the artificial saliva solutions, they were 15% and 17%, respectively, when an array of the cross-sensitive sensors based on the composite membranes prepared by different methods was used. The analysis errors were reduced to 3%–6% when analyzing the drug and to 0.2%–6% when analyzing the artificial saliva if an array was organized with the sensors based on the membrane with the dopant and the membrane without it, due to the decreasing correlation between their responses.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.