金融序列预测:一种新的模糊推理系统,用于精确值和区间值预测

IF 1.9 4区 经济学 Q2 ECONOMICS Computational Economics Pub Date : 2024-07-31 DOI:10.1007/s10614-024-10670-w
Kaike Sa Teles Rocha Alves, Rosangela Ballini, Eduardo Pestana de Aguiar
{"title":"金融序列预测:一种新的模糊推理系统,用于精确值和区间值预测","authors":"Kaike Sa Teles Rocha Alves, Rosangela Ballini, Eduardo Pestana de Aguiar","doi":"10.1007/s10614-024-10670-w","DOIUrl":null,"url":null,"abstract":"<p>Fuzzy inference systems emerged as a machine learning model that provides accurate and explainable results. Two fuzzy inference systems are reported in the literature, Mamdani and Takagi–Sugeno–Kang. Mamdani implements fuzzy sets in the consequent part and provides more explainable results. On the other hand, Takagi–Sugeno–Kang is more suitable for modeling more complex data because it uses polynomial functions. However, there is no unique method to design Takagi–Sugeno–Kang rules in the literature, and some limitations can be found in the proposed models, such as no direct control over the number of rules, many hyper-parameters and increased complexity due to hybridization to form Takagi–Sugeno–Kang rules. To overcome these shortcomings, this paper proposes a new Takagi–Sugeno–Kang. The user can define the number of rules in the introduced model considering the accuracy-interpretability trade-off. Furthermore, the model has a lower number of hyper-parameters. Two filtering approaches are implemented to compute the consequent parameters, the recursive least squares, and the weighted recursive least squares. The model is applied to six relevant financial series, S &amp;P 500, NASDAQ, TAIEX, CSI 300, KOSPI 200, and NYSE. The concept of interval-valued data is implemented to estimate the volatility of the economic series as a complement to classical forecasting. The results support that predictions of interval-valued data can be implemented as a complement to crisp prediction in defining decision-making strategies. The proposed approach’s results are compared with those of classical models and evolving Fuzzy Systems, and the model presented satisfactory results. The code of the proposed models is given at https://github.com/kaikerochaalves/NTSK.git.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"45 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Series Forecasting: A New Fuzzy Inference System for Crisp Values and Interval-Valued Predictions\",\"authors\":\"Kaike Sa Teles Rocha Alves, Rosangela Ballini, Eduardo Pestana de Aguiar\",\"doi\":\"10.1007/s10614-024-10670-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fuzzy inference systems emerged as a machine learning model that provides accurate and explainable results. Two fuzzy inference systems are reported in the literature, Mamdani and Takagi–Sugeno–Kang. Mamdani implements fuzzy sets in the consequent part and provides more explainable results. On the other hand, Takagi–Sugeno–Kang is more suitable for modeling more complex data because it uses polynomial functions. However, there is no unique method to design Takagi–Sugeno–Kang rules in the literature, and some limitations can be found in the proposed models, such as no direct control over the number of rules, many hyper-parameters and increased complexity due to hybridization to form Takagi–Sugeno–Kang rules. To overcome these shortcomings, this paper proposes a new Takagi–Sugeno–Kang. The user can define the number of rules in the introduced model considering the accuracy-interpretability trade-off. Furthermore, the model has a lower number of hyper-parameters. Two filtering approaches are implemented to compute the consequent parameters, the recursive least squares, and the weighted recursive least squares. The model is applied to six relevant financial series, S &amp;P 500, NASDAQ, TAIEX, CSI 300, KOSPI 200, and NYSE. The concept of interval-valued data is implemented to estimate the volatility of the economic series as a complement to classical forecasting. The results support that predictions of interval-valued data can be implemented as a complement to crisp prediction in defining decision-making strategies. The proposed approach’s results are compared with those of classical models and evolving Fuzzy Systems, and the model presented satisfactory results. The code of the proposed models is given at https://github.com/kaikerochaalves/NTSK.git.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10670-w\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10670-w","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

模糊推理系统是作为一种机器学习模型出现的,它能提供准确和可解释的结果。文献中报道了两种模糊推理系统,即 Mamdani 和 Takagi-Sugeno-Kang 系统。Mamdani 在结果部分实现了模糊集,并提供了更多可解释的结果。另一方面,Takagi-Sugeno-Kang 使用多项式函数,因此更适合为更复杂的数据建模。然而,文献中并没有设计高木-菅野-康规则的独特方法,而且所提出的模型也存在一些局限性,例如无法直接控制规则的数量、超参数较多、由于混合形成高木-菅野-康规则而增加了复杂性。为了克服这些缺点,本文提出了一种新的高木-菅野-康模型。考虑到准确性和可解释性之间的权衡,用户可以在引入的模型中定义规则的数量。此外,该模型的超参数数量较少。该模型采用了两种过滤方法来计算后续参数,即递归最小二乘法和加权递归最小二乘法。该模型应用于六个相关的金融序列,即 S &P 500、纳斯达克、台湾证券交易所、沪深 300、KOSPI 200 和纽约证券交易所。采用区间值数据的概念来估计经济序列的波动性,作为经典预测的补充。研究结果表明,区间值数据预测可作为清晰预测的补充,用于制定决策策略。将拟议方法的结果与经典模型和演化模糊系统的结果进行了比较,结果令人满意。拟议模型的代码见 https://github.com/kaikerochaalves/NTSK.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial Series Forecasting: A New Fuzzy Inference System for Crisp Values and Interval-Valued Predictions

Fuzzy inference systems emerged as a machine learning model that provides accurate and explainable results. Two fuzzy inference systems are reported in the literature, Mamdani and Takagi–Sugeno–Kang. Mamdani implements fuzzy sets in the consequent part and provides more explainable results. On the other hand, Takagi–Sugeno–Kang is more suitable for modeling more complex data because it uses polynomial functions. However, there is no unique method to design Takagi–Sugeno–Kang rules in the literature, and some limitations can be found in the proposed models, such as no direct control over the number of rules, many hyper-parameters and increased complexity due to hybridization to form Takagi–Sugeno–Kang rules. To overcome these shortcomings, this paper proposes a new Takagi–Sugeno–Kang. The user can define the number of rules in the introduced model considering the accuracy-interpretability trade-off. Furthermore, the model has a lower number of hyper-parameters. Two filtering approaches are implemented to compute the consequent parameters, the recursive least squares, and the weighted recursive least squares. The model is applied to six relevant financial series, S &P 500, NASDAQ, TAIEX, CSI 300, KOSPI 200, and NYSE. The concept of interval-valued data is implemented to estimate the volatility of the economic series as a complement to classical forecasting. The results support that predictions of interval-valued data can be implemented as a complement to crisp prediction in defining decision-making strategies. The proposed approach’s results are compared with those of classical models and evolving Fuzzy Systems, and the model presented satisfactory results. The code of the proposed models is given at https://github.com/kaikerochaalves/NTSK.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Economics
Computational Economics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
15.00%
发文量
119
审稿时长
12 months
期刊介绍: Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing
期刊最新文献
Assessing the Dual Impact of the Social Media Platforms on Psychological Well-being: A Multiple-Option Descriptive-Predictive Framework Modeling Asset Price Process: An Approach for Imaging Price Chart with Generative Diffusion Models Is the Price of Ether Driven by Demand or Pure Speculation? Iterative Deep Learning Approach to Active Portfolio Management with Sentiment Factors Asset Prices with Investor Protection in the Cross-Sectional Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1