Maryam Pashayi, Mehran Satari, Mehdi Momeni Shahraki
{"title":"利用 SEVIRI 数据垂直检索 AOD,案例研究:欧洲大陆","authors":"Maryam Pashayi, Mehran Satari, Mehdi Momeni Shahraki","doi":"10.5194/amt-2024-105","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Accurately determining Aerosol Optical Depth (AOD) across various altitudes with sufficient spatial and temporal resolution is crucial for effective aerosol monitoring, given the significant variations over time and space. While ground-based observations provide detailed vertical profiles, satellite data are crucial for addressing spatial and temporal gaps. This study utilizes profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) to estimate vertical AOD values at 1.5, 3, 5, and 10 km layers. These estimations are achieved with spatial and temporal resolutions of 3 km × 3 km and 15 minutes, respectively, over Europe. We employed machine learning models—XGBoost (XGB) and Random Forest (RF)—trained on SEVIRI data from 2017 to 2019 for the estimations. Validation using CALIOP AOD retrievals in 2020 confirmed the reliability of our findings, emphasizing the importance of wind speed (Ws) and wind direction (Wd) in improving AOD estimation accuracy. A comparison between seasonal and annual models revealed slight variations in accuracy, leading to the selection of annual models as the preferred approach for estimating SEVIRI AOD profiles. Among the annual models, the RF model demonstrated superior performance over the XGB model at higher layers, yielding more reliable AOD estimations. Further validation using data from EARLINET stations across Europe in 2020 indicated that the XGB model achieved better agreement with EARLINET AOD profiles, with R<sup>2</sup> values of 0.81, 0.77, 0.71, and 0.56, and RMSE values of 0.03, 0.01, 0.02, and 0.005, respectively.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"8 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical Retrieval of AOD using SEVIRI data, Case Study: European Continent\",\"authors\":\"Maryam Pashayi, Mehran Satari, Mehdi Momeni Shahraki\",\"doi\":\"10.5194/amt-2024-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Accurately determining Aerosol Optical Depth (AOD) across various altitudes with sufficient spatial and temporal resolution is crucial for effective aerosol monitoring, given the significant variations over time and space. While ground-based observations provide detailed vertical profiles, satellite data are crucial for addressing spatial and temporal gaps. This study utilizes profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) to estimate vertical AOD values at 1.5, 3, 5, and 10 km layers. These estimations are achieved with spatial and temporal resolutions of 3 km × 3 km and 15 minutes, respectively, over Europe. We employed machine learning models—XGBoost (XGB) and Random Forest (RF)—trained on SEVIRI data from 2017 to 2019 for the estimations. Validation using CALIOP AOD retrievals in 2020 confirmed the reliability of our findings, emphasizing the importance of wind speed (Ws) and wind direction (Wd) in improving AOD estimation accuracy. A comparison between seasonal and annual models revealed slight variations in accuracy, leading to the selection of annual models as the preferred approach for estimating SEVIRI AOD profiles. Among the annual models, the RF model demonstrated superior performance over the XGB model at higher layers, yielding more reliable AOD estimations. Further validation using data from EARLINET stations across Europe in 2020 indicated that the XGB model achieved better agreement with EARLINET AOD profiles, with R<sup>2</sup> values of 0.81, 0.77, 0.71, and 0.56, and RMSE values of 0.03, 0.01, 0.02, and 0.005, respectively.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-2024-105\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-2024-105","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Vertical Retrieval of AOD using SEVIRI data, Case Study: European Continent
Abstract. Accurately determining Aerosol Optical Depth (AOD) across various altitudes with sufficient spatial and temporal resolution is crucial for effective aerosol monitoring, given the significant variations over time and space. While ground-based observations provide detailed vertical profiles, satellite data are crucial for addressing spatial and temporal gaps. This study utilizes profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) to estimate vertical AOD values at 1.5, 3, 5, and 10 km layers. These estimations are achieved with spatial and temporal resolutions of 3 km × 3 km and 15 minutes, respectively, over Europe. We employed machine learning models—XGBoost (XGB) and Random Forest (RF)—trained on SEVIRI data from 2017 to 2019 for the estimations. Validation using CALIOP AOD retrievals in 2020 confirmed the reliability of our findings, emphasizing the importance of wind speed (Ws) and wind direction (Wd) in improving AOD estimation accuracy. A comparison between seasonal and annual models revealed slight variations in accuracy, leading to the selection of annual models as the preferred approach for estimating SEVIRI AOD profiles. Among the annual models, the RF model demonstrated superior performance over the XGB model at higher layers, yielding more reliable AOD estimations. Further validation using data from EARLINET stations across Europe in 2020 indicated that the XGB model achieved better agreement with EARLINET AOD profiles, with R2 values of 0.81, 0.77, 0.71, and 0.56, and RMSE values of 0.03, 0.01, 0.02, and 0.005, respectively.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.