Lian Cheng
(, ), Aiying Guo
(, ), Jun Li
(, ), Mengjiao Li
(, ), Qiang Lei
(, ), Wen Xu
(, ), Xiaolin Guo
(, ), Jianhua Zhang
(, )
{"title":"用于无创肌电信号采集的柔性 64 通道阵列中的三维 MXene/碳纳米管复合电极","authors":"Lian Cheng \n (, ), Aiying Guo \n (, ), Jun Li \n (, ), Mengjiao Li \n (, ), Qiang Lei \n (, ), Wen Xu \n (, ), Xiaolin Guo \n (, ), Jianhua Zhang \n (, )","doi":"10.1007/s40843-024-2994-0","DOIUrl":null,"url":null,"abstract":"<div><p>Non-invasive surface electromyography (sEMG) electrodes have vast potential in fields such as healthcare, human-computer interaction, and entertainment, providing diverse information related to electromyographic signals. Non-invasive sEMG electrodes reduce user risks but gather sEMG signals of lower quality compared to invasive ones. Currently, various advanced electrode materials have been developed for detecting physiological electrical signals, but the majority of them are single channel electrodes. Here, we report 64-channel three-dimensional (3D) Ti<sub>3</sub>C<sub>2</sub> MXene/CNT composite electrodes fabricated using bonding-driven self-assembly technologies. These electrodes are characterized by low skin-electrode contact impedance and a high signal-to-noise ratio (SNR) for collection of EMG signals. These electrode arrays exhibit remarkable flexibility, conforming seamlessly to the skin’s curvature. Specifically, the skin-electrode contact impedance of 3D Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes decreases by 10-fold compared to Ag/AgCl gel electrodes at a frequency of 100 Hz. Furthermore, when collecting sEMG signals from the arm, the prepared Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes exhibit lower baseline noise and higher SNR compared to Ag/AgCl gel electrodes. Furthermore, Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes can collect sEMG signals of different hand gestures, while maintaining a high SNR (∼25 dB). By combining machine learning, sEMG signals from different gestures can be identified with a recognition rate exceeding 90%. The exceptional performance and scalability of these 3D Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes indicate a promising future for shaping electronic skin and wearable device technologies.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 9","pages":"2977 - 2984"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional MXene/carbon nanotube composite electrodes in flexible 64-channel arrays for noninvasive electromyography signal acquisition\",\"authors\":\"Lian Cheng \\n (, ), Aiying Guo \\n (, ), Jun Li \\n (, ), Mengjiao Li \\n (, ), Qiang Lei \\n (, ), Wen Xu \\n (, ), Xiaolin Guo \\n (, ), Jianhua Zhang \\n (, )\",\"doi\":\"10.1007/s40843-024-2994-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-invasive surface electromyography (sEMG) electrodes have vast potential in fields such as healthcare, human-computer interaction, and entertainment, providing diverse information related to electromyographic signals. Non-invasive sEMG electrodes reduce user risks but gather sEMG signals of lower quality compared to invasive ones. Currently, various advanced electrode materials have been developed for detecting physiological electrical signals, but the majority of them are single channel electrodes. Here, we report 64-channel three-dimensional (3D) Ti<sub>3</sub>C<sub>2</sub> MXene/CNT composite electrodes fabricated using bonding-driven self-assembly technologies. These electrodes are characterized by low skin-electrode contact impedance and a high signal-to-noise ratio (SNR) for collection of EMG signals. These electrode arrays exhibit remarkable flexibility, conforming seamlessly to the skin’s curvature. Specifically, the skin-electrode contact impedance of 3D Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes decreases by 10-fold compared to Ag/AgCl gel electrodes at a frequency of 100 Hz. Furthermore, when collecting sEMG signals from the arm, the prepared Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes exhibit lower baseline noise and higher SNR compared to Ag/AgCl gel electrodes. Furthermore, Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes can collect sEMG signals of different hand gestures, while maintaining a high SNR (∼25 dB). By combining machine learning, sEMG signals from different gestures can be identified with a recognition rate exceeding 90%. The exceptional performance and scalability of these 3D Ti<sub>3</sub>C<sub>2</sub> MXene/CNT electrodes indicate a promising future for shaping electronic skin and wearable device technologies.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 9\",\"pages\":\"2977 - 2984\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-2994-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-2994-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Three-dimensional MXene/carbon nanotube composite electrodes in flexible 64-channel arrays for noninvasive electromyography signal acquisition
Non-invasive surface electromyography (sEMG) electrodes have vast potential in fields such as healthcare, human-computer interaction, and entertainment, providing diverse information related to electromyographic signals. Non-invasive sEMG electrodes reduce user risks but gather sEMG signals of lower quality compared to invasive ones. Currently, various advanced electrode materials have been developed for detecting physiological electrical signals, but the majority of them are single channel electrodes. Here, we report 64-channel three-dimensional (3D) Ti3C2 MXene/CNT composite electrodes fabricated using bonding-driven self-assembly technologies. These electrodes are characterized by low skin-electrode contact impedance and a high signal-to-noise ratio (SNR) for collection of EMG signals. These electrode arrays exhibit remarkable flexibility, conforming seamlessly to the skin’s curvature. Specifically, the skin-electrode contact impedance of 3D Ti3C2 MXene/CNT electrodes decreases by 10-fold compared to Ag/AgCl gel electrodes at a frequency of 100 Hz. Furthermore, when collecting sEMG signals from the arm, the prepared Ti3C2 MXene/CNT electrodes exhibit lower baseline noise and higher SNR compared to Ag/AgCl gel electrodes. Furthermore, Ti3C2 MXene/CNT electrodes can collect sEMG signals of different hand gestures, while maintaining a high SNR (∼25 dB). By combining machine learning, sEMG signals from different gestures can be identified with a recognition rate exceeding 90%. The exceptional performance and scalability of these 3D Ti3C2 MXene/CNT electrodes indicate a promising future for shaping electronic skin and wearable device technologies.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.