Justin T. Tran, Kent J. Warren, Steven A. Wilson, Christopher L. Muhich, Charles B. Musgrave, Alan W. Weimer
{"title":"通过太阳能热水玻璃高效制氢的最新回顾与展望","authors":"Justin T. Tran, Kent J. Warren, Steven A. Wilson, Christopher L. Muhich, Charles B. Musgrave, Alan W. Weimer","doi":"10.1002/wene.528","DOIUrl":null,"url":null,"abstract":"Solar thermal water splitting (STWS) produces renewable (or green) hydrogen from water using concentrated sunlight. Because STWS utilizes energy from the entire solar spectrum to drive the reduction–oxidation (redox) reactions that split water, it can achieve high theoretical solar‐to‐hydrogen efficiencies. In a two‐step STWS process, a metal oxide that serves as a redox mediator is first heated with concentrated sunlight to high temperatures (<jats:italic>T</jats:italic> >1000°C) to reduce it and evolve oxygen. In the second step, the reduced material is exposed to steam to reoxidize it to its original oxidation state and produce hydrogen. Various aspects of this process are comprehensively reviewed in this work, including the reduction and oxidation chemistries of active materials considered to date, the solar reactors developed to facilitate the STWS reactions, and the effects of operating conditions—including the recent innovation of elevated oxidant pressure—on efficiency. To conclude the review, a perspective on the future optimization of STWS is provided.This article is categorized under:<jats:list list-type=\"simple\"> <jats:list-item>Sustainable Energy > Solar Energy</jats:list-item> <jats:list-item>Emerging Technologies > Hydrogen and Fuel Cells</jats:list-item> <jats:list-item>Emerging Technologies > New Fuels</jats:list-item> </jats:list>","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":"198 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An updated review and perspective on efficient hydrogen generation via solar thermal water splitting\",\"authors\":\"Justin T. Tran, Kent J. Warren, Steven A. Wilson, Christopher L. Muhich, Charles B. Musgrave, Alan W. Weimer\",\"doi\":\"10.1002/wene.528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar thermal water splitting (STWS) produces renewable (or green) hydrogen from water using concentrated sunlight. Because STWS utilizes energy from the entire solar spectrum to drive the reduction–oxidation (redox) reactions that split water, it can achieve high theoretical solar‐to‐hydrogen efficiencies. In a two‐step STWS process, a metal oxide that serves as a redox mediator is first heated with concentrated sunlight to high temperatures (<jats:italic>T</jats:italic> >1000°C) to reduce it and evolve oxygen. In the second step, the reduced material is exposed to steam to reoxidize it to its original oxidation state and produce hydrogen. Various aspects of this process are comprehensively reviewed in this work, including the reduction and oxidation chemistries of active materials considered to date, the solar reactors developed to facilitate the STWS reactions, and the effects of operating conditions—including the recent innovation of elevated oxidant pressure—on efficiency. To conclude the review, a perspective on the future optimization of STWS is provided.This article is categorized under:<jats:list list-type=\\\"simple\\\"> <jats:list-item>Sustainable Energy > Solar Energy</jats:list-item> <jats:list-item>Emerging Technologies > Hydrogen and Fuel Cells</jats:list-item> <jats:list-item>Emerging Technologies > New Fuels</jats:list-item> </jats:list>\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.528\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.528","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An updated review and perspective on efficient hydrogen generation via solar thermal water splitting
Solar thermal water splitting (STWS) produces renewable (or green) hydrogen from water using concentrated sunlight. Because STWS utilizes energy from the entire solar spectrum to drive the reduction–oxidation (redox) reactions that split water, it can achieve high theoretical solar‐to‐hydrogen efficiencies. In a two‐step STWS process, a metal oxide that serves as a redox mediator is first heated with concentrated sunlight to high temperatures (T >1000°C) to reduce it and evolve oxygen. In the second step, the reduced material is exposed to steam to reoxidize it to its original oxidation state and produce hydrogen. Various aspects of this process are comprehensively reviewed in this work, including the reduction and oxidation chemistries of active materials considered to date, the solar reactors developed to facilitate the STWS reactions, and the effects of operating conditions—including the recent innovation of elevated oxidant pressure—on efficiency. To conclude the review, a perspective on the future optimization of STWS is provided.This article is categorized under:Sustainable Energy > Solar EnergyEmerging Technologies > Hydrogen and Fuel CellsEmerging Technologies > New Fuels
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.