Arun Karnwal, Savitri Martolia, Aradhana Dohroo, Abdel Rahman Mohammad Said Al-Tawaha, Tabarak Malik
{"title":"探索重金属和持久性有机污染物污染的生物修复战略:微生物、植物和纳米技术的作用","authors":"Arun Karnwal, Savitri Martolia, Aradhana Dohroo, Abdel Rahman Mohammad Said Al-Tawaha, Tabarak Malik","doi":"10.3389/fenvs.2024.1397850","DOIUrl":null,"url":null,"abstract":"Heavy metal and Persistent Organic Pollutants (POPs) pollution stemming from industrialization, intensive agriculture, and other human activities pose significant environmental and health threats. These contaminants persist in the air, soil, and water, particularly in industrialized nations, adversely affecting human health and ecosystems. While physical and chemical methods exist for detoxifying contaminated soil, they often have drawbacks such as high cost and technical complexity. Bioremediation, utilizing plants and microbes, offers a promising solution. Certain microorganisms like <jats:italic>Streptomyces</jats:italic>, <jats:italic>Aspergillus</jats:italic> and plant species such as <jats:italic>Hibiscus</jats:italic> and <jats:italic>Helianthus</jats:italic> show high metal adsorption capacities, making them suitable for bioremediation. However, plants’ slow growth and limited remediation efficiency have been challenges. Recent advancements involve leveraging plant-associated microbes to enhance heavy metal removal. Additionally, nanotechnology, particularly nano-bioremediation, shows promise in efficiently removing contaminants from polluted environments by combining nanoparticles with bioremediation techniques. This review underscores bioremediation methods for heavy metals using plants and microbes, focusing on the role of Plant Growth Promoting Rhizobacteria (PGPR) in promoting phytoremediation. It also explores the implementation of nanotechnologies for eliminating metals from polluted soil, emphasizing the significance of soil microbiomes, nanoparticles, and contaminant interactions in developing effective nano-remediation strategies for optimizing agriculture in contaminated fields.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":"96 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring bioremediation strategies for heavy metals and POPs pollution: the role of microbes, plants, and nanotechnology\",\"authors\":\"Arun Karnwal, Savitri Martolia, Aradhana Dohroo, Abdel Rahman Mohammad Said Al-Tawaha, Tabarak Malik\",\"doi\":\"10.3389/fenvs.2024.1397850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy metal and Persistent Organic Pollutants (POPs) pollution stemming from industrialization, intensive agriculture, and other human activities pose significant environmental and health threats. These contaminants persist in the air, soil, and water, particularly in industrialized nations, adversely affecting human health and ecosystems. While physical and chemical methods exist for detoxifying contaminated soil, they often have drawbacks such as high cost and technical complexity. Bioremediation, utilizing plants and microbes, offers a promising solution. Certain microorganisms like <jats:italic>Streptomyces</jats:italic>, <jats:italic>Aspergillus</jats:italic> and plant species such as <jats:italic>Hibiscus</jats:italic> and <jats:italic>Helianthus</jats:italic> show high metal adsorption capacities, making them suitable for bioremediation. However, plants’ slow growth and limited remediation efficiency have been challenges. Recent advancements involve leveraging plant-associated microbes to enhance heavy metal removal. Additionally, nanotechnology, particularly nano-bioremediation, shows promise in efficiently removing contaminants from polluted environments by combining nanoparticles with bioremediation techniques. This review underscores bioremediation methods for heavy metals using plants and microbes, focusing on the role of Plant Growth Promoting Rhizobacteria (PGPR) in promoting phytoremediation. It also explores the implementation of nanotechnologies for eliminating metals from polluted soil, emphasizing the significance of soil microbiomes, nanoparticles, and contaminant interactions in developing effective nano-remediation strategies for optimizing agriculture in contaminated fields.\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1397850\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1397850","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploring bioremediation strategies for heavy metals and POPs pollution: the role of microbes, plants, and nanotechnology
Heavy metal and Persistent Organic Pollutants (POPs) pollution stemming from industrialization, intensive agriculture, and other human activities pose significant environmental and health threats. These contaminants persist in the air, soil, and water, particularly in industrialized nations, adversely affecting human health and ecosystems. While physical and chemical methods exist for detoxifying contaminated soil, they often have drawbacks such as high cost and technical complexity. Bioremediation, utilizing plants and microbes, offers a promising solution. Certain microorganisms like Streptomyces, Aspergillus and plant species such as Hibiscus and Helianthus show high metal adsorption capacities, making them suitable for bioremediation. However, plants’ slow growth and limited remediation efficiency have been challenges. Recent advancements involve leveraging plant-associated microbes to enhance heavy metal removal. Additionally, nanotechnology, particularly nano-bioremediation, shows promise in efficiently removing contaminants from polluted environments by combining nanoparticles with bioremediation techniques. This review underscores bioremediation methods for heavy metals using plants and microbes, focusing on the role of Plant Growth Promoting Rhizobacteria (PGPR) in promoting phytoremediation. It also explores the implementation of nanotechnologies for eliminating metals from polluted soil, emphasizing the significance of soil microbiomes, nanoparticles, and contaminant interactions in developing effective nano-remediation strategies for optimizing agriculture in contaminated fields.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.