带铅橡胶支座隔离桥上的中低速磁悬浮车辆-导轨系统的耦合振动

IF 2.1 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Structural Engineering Pub Date : 2024-07-30 DOI:10.1177/13694332241268170
Fenghua Huang, Jinxiao Wang, Nianguan Teng, Bin Cheng
{"title":"带铅橡胶支座隔离桥上的中低速磁悬浮车辆-导轨系统的耦合振动","authors":"Fenghua Huang, Jinxiao Wang, Nianguan Teng, Bin Cheng","doi":"10.1177/13694332241268170","DOIUrl":null,"url":null,"abstract":"This paper investigates the dynamic response of low-medium-speed (LMS) maglev vehicle moving on the isolated bridge with lead rubber bearings (LRBs). In the vehicle-guideway bridge model, the vehicle is simulated as a 50-degree-of-freedom model consisting of a car-body and ten bogie modules. The guideway bridge with LRB is established by the finite element method, and the guideway is interacted with the vehicle by the actively controlled electromagnetic forces. The LRB is simulated by the nonlinear spring element for reflecting the hysteretic performance, and a fast nonlinear analysis (FNA) method is proposed to achieve the potential nonlinear behavior of LRB under vehicle load. Then, the dynamic response of maglev vehicle running on the isolated bridge with LRB is investigated and compared to that on the non-isolated bridge. The effect of vehicle speed and LRB isolation degree on the coupled system responses is studied. Furthermore, the driving quality of vehicle on LRB bridge is discussed, and the applicability of LRB to maglev line bridge is thoroughly evaluated. The results show that the installation of LRB exhibits relatively insignificant influence on the vertical response of vehicle-guideway system, while could enlarge the lateral response. The lateral response of coupled system is much more vulnerable to the isolation degree, and it is recommended that the isolation degree of LRB should not exceed 2.50 to guarantee the driving comfort and running safety.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled vibration of low-medium-speed maglev vehicle-guideway system on isolated bridge with lead rubber bearings\",\"authors\":\"Fenghua Huang, Jinxiao Wang, Nianguan Teng, Bin Cheng\",\"doi\":\"10.1177/13694332241268170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the dynamic response of low-medium-speed (LMS) maglev vehicle moving on the isolated bridge with lead rubber bearings (LRBs). In the vehicle-guideway bridge model, the vehicle is simulated as a 50-degree-of-freedom model consisting of a car-body and ten bogie modules. The guideway bridge with LRB is established by the finite element method, and the guideway is interacted with the vehicle by the actively controlled electromagnetic forces. The LRB is simulated by the nonlinear spring element for reflecting the hysteretic performance, and a fast nonlinear analysis (FNA) method is proposed to achieve the potential nonlinear behavior of LRB under vehicle load. Then, the dynamic response of maglev vehicle running on the isolated bridge with LRB is investigated and compared to that on the non-isolated bridge. The effect of vehicle speed and LRB isolation degree on the coupled system responses is studied. Furthermore, the driving quality of vehicle on LRB bridge is discussed, and the applicability of LRB to maglev line bridge is thoroughly evaluated. The results show that the installation of LRB exhibits relatively insignificant influence on the vertical response of vehicle-guideway system, while could enlarge the lateral response. The lateral response of coupled system is much more vulnerable to the isolation degree, and it is recommended that the isolation degree of LRB should not exceed 2.50 to guarantee the driving comfort and running safety.\",\"PeriodicalId\":50849,\"journal\":{\"name\":\"Advances in Structural Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Structural Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241268170\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241268170","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了中低速(LMS)磁悬浮列车在装有铅橡胶支座(LRB)的隔离桥上行驶时的动态响应。在车辆-导轨桥模型中,车辆被模拟为由车体和十个转向架模块组成的 50 自由度模型。带 LRB 的导轨桥采用有限元法建立,导轨与车辆之间通过主动控制的电磁力相互作用。采用非线性弹簧元素模拟 LRB,以反映其滞后性能,并提出了一种快速非线性分析(FNA)方法,以实现 LRB 在车辆载荷作用下的潜在非线性行为。然后,研究了磁悬浮车辆在带 LRB 的隔离桥上运行的动态响应,并与非隔离桥上的动态响应进行了比较。研究了车辆速度和 LRB 隔离程度对耦合系统响应的影响。此外,还讨论了车辆在 LRB 桥上的行驶质量,并全面评估了 LRB 在磁悬浮线路桥梁上的适用性。结果表明,安装 LRB 对车辆-导轨系统的垂直响应影响相对较小,但可以扩大横向响应。耦合系统的横向响应更容易受到隔离度的影响,因此建议 LRB 的隔离度不应超过 2.50,以保证行车舒适性和运行安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coupled vibration of low-medium-speed maglev vehicle-guideway system on isolated bridge with lead rubber bearings
This paper investigates the dynamic response of low-medium-speed (LMS) maglev vehicle moving on the isolated bridge with lead rubber bearings (LRBs). In the vehicle-guideway bridge model, the vehicle is simulated as a 50-degree-of-freedom model consisting of a car-body and ten bogie modules. The guideway bridge with LRB is established by the finite element method, and the guideway is interacted with the vehicle by the actively controlled electromagnetic forces. The LRB is simulated by the nonlinear spring element for reflecting the hysteretic performance, and a fast nonlinear analysis (FNA) method is proposed to achieve the potential nonlinear behavior of LRB under vehicle load. Then, the dynamic response of maglev vehicle running on the isolated bridge with LRB is investigated and compared to that on the non-isolated bridge. The effect of vehicle speed and LRB isolation degree on the coupled system responses is studied. Furthermore, the driving quality of vehicle on LRB bridge is discussed, and the applicability of LRB to maglev line bridge is thoroughly evaluated. The results show that the installation of LRB exhibits relatively insignificant influence on the vertical response of vehicle-guideway system, while could enlarge the lateral response. The lateral response of coupled system is much more vulnerable to the isolation degree, and it is recommended that the isolation degree of LRB should not exceed 2.50 to guarantee the driving comfort and running safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Structural Engineering
Advances in Structural Engineering 工程技术-工程:土木
CiteScore
5.00
自引率
11.50%
发文量
230
审稿时长
2.3 months
期刊介绍: Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.
期刊最新文献
Multi-experimental seismic analysis of low-rise thin reinforced concrete wall building with unconnected elastomeric isolators using real-time hybrid simulations Prediction and optimization framework of shear strength of reinforced concrete flanged shear wall based on machine learning and non-dominated sorting genetic algorithm-II Deep learning-based minute-scale digital prediction model for temperature induced deflection of a multi-tower double-layer steel truss bridge Experimental investigation on shear behavior of double-row perforated GFRP rib connectors in FRP-concrete hybrid beams Seismic response prediction method of train-bridge coupled system based on convolutional neural network-bidirectional long short-term memory-attention modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1