Sangita R. Panda, Manoranjan Pradhan, Sandipan Mallik, Trinath Sahu
{"title":"InxGa1-xAs/GaAs 量子阱场效应晶体管结构中的非对称掺杂电子传输迁移率","authors":"Sangita R. Panda, Manoranjan Pradhan, Sandipan Mallik, Trinath Sahu","doi":"10.1002/pssb.202400206","DOIUrl":null,"url":null,"abstract":"We analyze the asymmetric doping‐dependent electron mobility <jats:italic>μ</jats:italic> of GaAs/InGaAs/GaAs quantum well field‐effect transistor (QWFET) structure. We consider doping concentrations, <jats:italic>nd1</jats:italic> and <jats:italic>nd2</jats:italic>, in the substrate and surface barriers, respectively, and study <jats:italic>μ</jats:italic> as a function of <jats:italic>nd2</jats:italic>, taking (<jats:italic>nd1 </jats:italic>+<jats:italic> nd2</jats:italic>) unchanged. An increase in <jats:italic>nd2</jats:italic> decreases <jats:italic>nd1</jats:italic>, yielding interesting changes in the occupation of subbands. For well width <jats:italic>W</jats:italic> < 164 Å, <jats:italic>μ</jats:italic> is due to single subband occupancy (SSO). Around <jats:italic>W</jats:italic> = 164 Å, there occurs first SSO, then double subband occupancy (DSO), and again SSO with an increase in <jats:italic>nd2</jats:italic>. Near the transition of subbands, abrupt discontinuities in <jats:italic>μ</jats:italic> arise due to inter‐subband effects. Thus, high to low and then high values of <jats:italic>μ</jats:italic> are obtained, displaying almost flat‐like variations, symmetric about |<jats:italic>nd</jats:italic>2 − <jats:italic>nd1</jats:italic>| =<jats:italic> </jats:italic>0. As <jats:italic>W</jats:italic> becomes wider, complete DSO occurs throughout the range of <jats:italic>nd2</jats:italic> having reduced <jats:italic>μ</jats:italic>. Alternatively, keeping <jats:italic>nd1</jats:italic> unchanged and by increasing <jats:italic>nd2,</jats:italic> <jats:italic>μ</jats:italic> raises due to enhanced <jats:italic>N</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub>, with a drop near the transition from SSO to DSO. Under SSO, <jats:italic>μ</jats:italic> is controlled by the ionized impurity and alloy disorder scatterings, while under DSO, the impurity scattering determines <jats:italic>μ</jats:italic>. Our analysis on <jats:italic>μ</jats:italic> can help to examine the inter‐subband effects on device characteristics of the QWFET system.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"96 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Doping‐Dependent Electron Transport Mobility in InxGa1–xAs/GaAs Quantum Well Field‐Effect Transistor Structure\",\"authors\":\"Sangita R. Panda, Manoranjan Pradhan, Sandipan Mallik, Trinath Sahu\",\"doi\":\"10.1002/pssb.202400206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the asymmetric doping‐dependent electron mobility <jats:italic>μ</jats:italic> of GaAs/InGaAs/GaAs quantum well field‐effect transistor (QWFET) structure. We consider doping concentrations, <jats:italic>nd1</jats:italic> and <jats:italic>nd2</jats:italic>, in the substrate and surface barriers, respectively, and study <jats:italic>μ</jats:italic> as a function of <jats:italic>nd2</jats:italic>, taking (<jats:italic>nd1 </jats:italic>+<jats:italic> nd2</jats:italic>) unchanged. An increase in <jats:italic>nd2</jats:italic> decreases <jats:italic>nd1</jats:italic>, yielding interesting changes in the occupation of subbands. For well width <jats:italic>W</jats:italic> < 164 Å, <jats:italic>μ</jats:italic> is due to single subband occupancy (SSO). Around <jats:italic>W</jats:italic> = 164 Å, there occurs first SSO, then double subband occupancy (DSO), and again SSO with an increase in <jats:italic>nd2</jats:italic>. Near the transition of subbands, abrupt discontinuities in <jats:italic>μ</jats:italic> arise due to inter‐subband effects. Thus, high to low and then high values of <jats:italic>μ</jats:italic> are obtained, displaying almost flat‐like variations, symmetric about |<jats:italic>nd</jats:italic>2 − <jats:italic>nd1</jats:italic>| =<jats:italic> </jats:italic>0. As <jats:italic>W</jats:italic> becomes wider, complete DSO occurs throughout the range of <jats:italic>nd2</jats:italic> having reduced <jats:italic>μ</jats:italic>. Alternatively, keeping <jats:italic>nd1</jats:italic> unchanged and by increasing <jats:italic>nd2,</jats:italic> <jats:italic>μ</jats:italic> raises due to enhanced <jats:italic>N</jats:italic> <jats:sub> <jats:italic>s</jats:italic> </jats:sub>, with a drop near the transition from SSO to DSO. Under SSO, <jats:italic>μ</jats:italic> is controlled by the ionized impurity and alloy disorder scatterings, while under DSO, the impurity scattering determines <jats:italic>μ</jats:italic>. Our analysis on <jats:italic>μ</jats:italic> can help to examine the inter‐subband effects on device characteristics of the QWFET system.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400206\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400206","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
我们分析了 GaAs/InGaAs/GaAs 量子阱场效应晶体管 (QWFET) 结构的非对称掺杂电子迁移率 μ。我们分别考虑了衬底和表面势垒中的掺杂浓度 nd1 和 nd2,在 (nd1 + nd2) 不变的情况下,研究了 μ 与 nd2 的函数关系。nd2的增大会减小nd1,从而使子带的占有率发生有趣的变化。在井宽 W < 164 Å 时,μ 是由于单子带占据(SSO)造成的。在 W = 164 Å 附近,首先出现的是 SSO,然后是双子带占用(DSO),随着 nd2 的增加,再次出现 SSO。在子带过渡附近,由于子带之间的影响,μ 出现了突然的不连续性。因此,μ 的值从高到低再到高,几乎呈扁平状变化,对称于 |nd2 - nd1| = 0。或者,保持 nd1 不变并增加 nd2,μ 会因 N s 的增加而升高,并在从 SSO 过渡到 DSO 附近下降。在 SSO 条件下,μ 受电离杂质和合金无序散射的控制,而在 DSO 条件下,杂质散射决定μ。我们对 μ 的分析有助于研究子带间效应对 QWFET 系统器件特性的影响。
Asymmetric Doping‐Dependent Electron Transport Mobility in InxGa1–xAs/GaAs Quantum Well Field‐Effect Transistor Structure
We analyze the asymmetric doping‐dependent electron mobility μ of GaAs/InGaAs/GaAs quantum well field‐effect transistor (QWFET) structure. We consider doping concentrations, nd1 and nd2, in the substrate and surface barriers, respectively, and study μ as a function of nd2, taking (nd1 + nd2) unchanged. An increase in nd2 decreases nd1, yielding interesting changes in the occupation of subbands. For well width W < 164 Å, μ is due to single subband occupancy (SSO). Around W = 164 Å, there occurs first SSO, then double subband occupancy (DSO), and again SSO with an increase in nd2. Near the transition of subbands, abrupt discontinuities in μ arise due to inter‐subband effects. Thus, high to low and then high values of μ are obtained, displaying almost flat‐like variations, symmetric about |nd2 − nd1| =0. As W becomes wider, complete DSO occurs throughout the range of nd2 having reduced μ. Alternatively, keeping nd1 unchanged and by increasing nd2,μ raises due to enhanced Ns, with a drop near the transition from SSO to DSO. Under SSO, μ is controlled by the ionized impurity and alloy disorder scatterings, while under DSO, the impurity scattering determines μ. Our analysis on μ can help to examine the inter‐subband effects on device characteristics of the QWFET system.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.