{"title":"不同价Hi和VO对β-Ga2O3的迁移率、电导率和载流子寿命的影响的第一性原理研究:Mo5+/6+","authors":"Xia Liu, Shumin Wen, Dingdu Chen, Wei Wang, Xiurong Feng, Erjun Zhao","doi":"10.1002/pssb.202400229","DOIUrl":null,"url":null,"abstract":"The poor conductivity of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> limits its application in optoelectronic devices. Currently, there have been advancements in investigating the impact of Mo doping on the photoelectric characteristics of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. However, there are few studies on the impact of different valence states of Mo doping and the coexistence of O vacancy and interstitial H on the electrical properties of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. In the process of preparing β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, O vacancy and interstitial H inevitably exist. In response to these problems, the first‐principles GGA + U method is used to study the impact of different valence states of Mo doping and the coexistence of interstitial H and O vacancy on the electrical properties of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The electronic structure, mobility, conductivity, and carrier lifetime of the system are calculated and analyzed. The results show that all doping systems are more stable under Ga‐rich conditions. The band gap of the Mo‐doped β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> system gradually narrows, which is mainly attributed to the Burstein–Moss effect and the multiplicity reintegration effect. Mo doping effectively improves the electrical conductivity of the system. Ga<jats:sub>47</jats:sub>O<jats:sub>72</jats:sub>Mo<jats:sub>1</jats:sub><jats:sup>6+</jats:sup>H<jats:sub>1</jats:sub><jats:sup>1+</jats:sup> system has the longest carrier lifetime; Ga<jats:sub>47</jats:sub>O<jats:sub>72</jats:sub>Mo<jats:sub>1</jats:sub><jats:sup>6+</jats:sup>H<jats:sub>1</jats:sub><jats:sup>0</jats:sup> has the largest mobility; Ga<jats:sub>47</jats:sub>O<jats:sub>72</jats:sub>Mo<jats:sub>1</jats:sub><jats:sup>5+</jats:sup>H<jats:sub>1</jats:sub><jats:sup>0</jats:sup> system has the highest conductivity. Therefore, Mo‐doped β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> materials help to prepare new electrical performance devices.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"61 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First‐Principles Study on the Effects of Different Valence Hi and VO on the Mobility, Conductivity, and Carrier Lifetime of β‐Ga2O3: Mo5+/6+\",\"authors\":\"Xia Liu, Shumin Wen, Dingdu Chen, Wei Wang, Xiurong Feng, Erjun Zhao\",\"doi\":\"10.1002/pssb.202400229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The poor conductivity of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> limits its application in optoelectronic devices. Currently, there have been advancements in investigating the impact of Mo doping on the photoelectric characteristics of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. However, there are few studies on the impact of different valence states of Mo doping and the coexistence of O vacancy and interstitial H on the electrical properties of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. In the process of preparing β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, O vacancy and interstitial H inevitably exist. In response to these problems, the first‐principles GGA + U method is used to study the impact of different valence states of Mo doping and the coexistence of interstitial H and O vacancy on the electrical properties of β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The electronic structure, mobility, conductivity, and carrier lifetime of the system are calculated and analyzed. The results show that all doping systems are more stable under Ga‐rich conditions. The band gap of the Mo‐doped β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> system gradually narrows, which is mainly attributed to the Burstein–Moss effect and the multiplicity reintegration effect. Mo doping effectively improves the electrical conductivity of the system. Ga<jats:sub>47</jats:sub>O<jats:sub>72</jats:sub>Mo<jats:sub>1</jats:sub><jats:sup>6+</jats:sup>H<jats:sub>1</jats:sub><jats:sup>1+</jats:sup> system has the longest carrier lifetime; Ga<jats:sub>47</jats:sub>O<jats:sub>72</jats:sub>Mo<jats:sub>1</jats:sub><jats:sup>6+</jats:sup>H<jats:sub>1</jats:sub><jats:sup>0</jats:sup> has the largest mobility; Ga<jats:sub>47</jats:sub>O<jats:sub>72</jats:sub>Mo<jats:sub>1</jats:sub><jats:sup>5+</jats:sup>H<jats:sub>1</jats:sub><jats:sup>0</jats:sup> system has the highest conductivity. Therefore, Mo‐doped β‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> materials help to prepare new electrical performance devices.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202400229\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202400229","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
β-Ga2O3 的导电性较差,限制了其在光电设备中的应用。目前,在研究掺杂 Mo 对 β-Ga2O3 光电特性的影响方面取得了进展。然而,有关掺杂 Mo 的不同价态以及 O 空位和间隙 H 共存对 β-Ga2O3 电学特性影响的研究却很少。在制备 β-Ga2O3 的过程中,不可避免地会存在 O 空位和间隙 H。针对这些问题,采用第一原理 GGA + U 方法研究了掺杂 Mo 的不同价态以及间隙 H 和 O 空位共存对 β-Ga2O3 电学性质的影响。计算并分析了该体系的电子结构、迁移率、电导率和载流子寿命。结果表明,所有掺杂体系在富镓条件下都更加稳定。掺杂 Mo 的 β-Ga2O3 体系的带隙逐渐变窄,这主要归因于 Burstein-Moss 效应和多重再整合效应。掺杂 Mo 有效地提高了体系的导电性。Ga47O72Mo16+H11+体系的载流子寿命最长;Ga47O72Mo16+H10体系的迁移率最大;Ga47O72Mo15+H10体系的导电率最高。因此,掺杂 Mo 的 β-Ga2O3 材料有助于制备新型电性能器件。
First‐Principles Study on the Effects of Different Valence Hi and VO on the Mobility, Conductivity, and Carrier Lifetime of β‐Ga2O3: Mo5+/6+
The poor conductivity of β‐Ga2O3 limits its application in optoelectronic devices. Currently, there have been advancements in investigating the impact of Mo doping on the photoelectric characteristics of β‐Ga2O3. However, there are few studies on the impact of different valence states of Mo doping and the coexistence of O vacancy and interstitial H on the electrical properties of β‐Ga2O3. In the process of preparing β‐Ga2O3, O vacancy and interstitial H inevitably exist. In response to these problems, the first‐principles GGA + U method is used to study the impact of different valence states of Mo doping and the coexistence of interstitial H and O vacancy on the electrical properties of β‐Ga2O3. The electronic structure, mobility, conductivity, and carrier lifetime of the system are calculated and analyzed. The results show that all doping systems are more stable under Ga‐rich conditions. The band gap of the Mo‐doped β‐Ga2O3 system gradually narrows, which is mainly attributed to the Burstein–Moss effect and the multiplicity reintegration effect. Mo doping effectively improves the electrical conductivity of the system. Ga47O72Mo16+H11+ system has the longest carrier lifetime; Ga47O72Mo16+H10 has the largest mobility; Ga47O72Mo15+H10 system has the highest conductivity. Therefore, Mo‐doped β‐Ga2O3 materials help to prepare new electrical performance devices.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.