通过机器学习重构全球二氧化碳日排放量

Tao Li, Lixing Wang, Zihan Qiu, Philippe Ciais, Taochun Sun, Matthew W. Jones, Robbie M. Andrew, Glen P. Peters, Piyu ke, Xiaoting Huang, Robert B. Jackson, Zhu Liu
{"title":"通过机器学习重构全球二氧化碳日排放量","authors":"Tao Li, Lixing Wang, Zihan Qiu, Philippe Ciais, Taochun Sun, Matthew W. Jones, Robbie M. Andrew, Glen P. Peters, Piyu ke, Xiaoting Huang, Robert B. Jackson, Zhu Liu","doi":"arxiv-2407.20057","DOIUrl":null,"url":null,"abstract":"High temporal resolution CO2 emission data are crucial for understanding the\ndrivers of emission changes, however, current emission dataset is only\navailable on a yearly basis. Here, we extended a global daily CO2 emissions\ndataset backwards in time to 1970 using machine learning algorithm, which was\ntrained to predict historical daily emissions on national scales based on\nrelationships between daily emission variations and predictors established for\nthe period since 2019. Variation in daily CO2 emissions far exceeded the\nsmoothed seasonal variations. For example, the range of daily CO2 emissions\nequivalent to 31% of the year average daily emissions in China and 46% of that\nin India in 2022, respectively. We identified the critical emission-climate\ntemperature (Tc) is 16.5 degree celsius for global average (18.7 degree celsius\nfor China, 14.9 degree celsius for U.S., and 18.4 degree celsius for Japan), in\nwhich negative correlation observed between daily CO2 emission and ambient\ntemperature below Tc and a positive correlation above it, demonstrating\nincreased emissions associated with higher ambient temperature. The long-term\ntime series spanning over fifty years of global daily CO2 emissions reveals an\nincreasing trend in emissions due to extreme temperature events, driven by the\nrising frequency of these occurrences. This work suggests that, due to climate\nchange, greater efforts may be needed to reduce CO2 emissions.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing Global Daily CO2 Emissions via Machine Learning\",\"authors\":\"Tao Li, Lixing Wang, Zihan Qiu, Philippe Ciais, Taochun Sun, Matthew W. Jones, Robbie M. Andrew, Glen P. Peters, Piyu ke, Xiaoting Huang, Robert B. Jackson, Zhu Liu\",\"doi\":\"arxiv-2407.20057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High temporal resolution CO2 emission data are crucial for understanding the\\ndrivers of emission changes, however, current emission dataset is only\\navailable on a yearly basis. Here, we extended a global daily CO2 emissions\\ndataset backwards in time to 1970 using machine learning algorithm, which was\\ntrained to predict historical daily emissions on national scales based on\\nrelationships between daily emission variations and predictors established for\\nthe period since 2019. Variation in daily CO2 emissions far exceeded the\\nsmoothed seasonal variations. For example, the range of daily CO2 emissions\\nequivalent to 31% of the year average daily emissions in China and 46% of that\\nin India in 2022, respectively. We identified the critical emission-climate\\ntemperature (Tc) is 16.5 degree celsius for global average (18.7 degree celsius\\nfor China, 14.9 degree celsius for U.S., and 18.4 degree celsius for Japan), in\\nwhich negative correlation observed between daily CO2 emission and ambient\\ntemperature below Tc and a positive correlation above it, demonstrating\\nincreased emissions associated with higher ambient temperature. The long-term\\ntime series spanning over fifty years of global daily CO2 emissions reveals an\\nincreasing trend in emissions due to extreme temperature events, driven by the\\nrising frequency of these occurrences. This work suggests that, due to climate\\nchange, greater efforts may be needed to reduce CO2 emissions.\",\"PeriodicalId\":501166,\"journal\":{\"name\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高时间分辨率的二氧化碳排放数据对于了解排放变化的驱动因素至关重要,然而,目前的排放数据集只能按年提供。在此,我们利用机器学习算法将全球二氧化碳日排放量数据集的时间向后延伸至 1970 年,并根据日排放量变化与 2019 年以来建立的预测因子之间的关系,对国家尺度上的历史日排放量进行了预测。二氧化碳日排放量的变化远远超过平滑的季节变化。例如,2022 年中国和印度的二氧化碳日排放量范围分别相当于年平均日排放量的 31% 和 46% 。我们确定全球平均的临界排放-气候温度(Tc)为 16.5 摄氏度(中国为 18.7 摄氏度,美国为 14.9 摄氏度,日本为 18.4 摄氏度),在 Tc 值以下,二氧化碳日排放量与环境温度呈负相关,而在 Tc 值以上则呈正相关,这表明环境温度越高,排放量越大。全球二氧化碳日排放量 50 多年的长期时间序列显示,极端温度事件导致的排放量呈上升趋势,其驱动力是极端温度事件发生频率的增加。这项研究表明,由于气候变化,可能需要加大力度减少二氧化碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing Global Daily CO2 Emissions via Machine Learning
High temporal resolution CO2 emission data are crucial for understanding the drivers of emission changes, however, current emission dataset is only available on a yearly basis. Here, we extended a global daily CO2 emissions dataset backwards in time to 1970 using machine learning algorithm, which was trained to predict historical daily emissions on national scales based on relationships between daily emission variations and predictors established for the period since 2019. Variation in daily CO2 emissions far exceeded the smoothed seasonal variations. For example, the range of daily CO2 emissions equivalent to 31% of the year average daily emissions in China and 46% of that in India in 2022, respectively. We identified the critical emission-climate temperature (Tc) is 16.5 degree celsius for global average (18.7 degree celsius for China, 14.9 degree celsius for U.S., and 18.4 degree celsius for Japan), in which negative correlation observed between daily CO2 emission and ambient temperature below Tc and a positive correlation above it, demonstrating increased emissions associated with higher ambient temperature. The long-term time series spanning over fifty years of global daily CO2 emissions reveals an increasing trend in emissions due to extreme temperature events, driven by the rising frequency of these occurrences. This work suggests that, due to climate change, greater efforts may be needed to reduce CO2 emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1