为 RAG 引入一个新的超参数:上下文窗口利用率

Kush Juvekar, Anupam Purwar
{"title":"为 RAG 引入一个新的超参数:上下文窗口利用率","authors":"Kush Juvekar, Anupam Purwar","doi":"arxiv-2407.19794","DOIUrl":null,"url":null,"abstract":"This paper introduces a new hyper-parameter for Retrieval-Augmented\nGeneration (RAG) systems called Context Window Utilization. RAG systems enhance\ngenerative models by incorporating relevant information retrieved from external\nknowledge bases, improving the factual accuracy and contextual relevance of\ngenerated responses. The size of the text chunks retrieved and processed is a\ncritical factor influencing RAG performance. This study aims to identify the\noptimal chunk size that maximizes answer generation quality. Through systematic\nexperimentation, we analyze the effects of varying chunk sizes on the\nefficiency and effectiveness of RAG frameworks. Our findings reveal that an\noptimal chunk size balances the trade-off between providing sufficient context\nand minimizing irrelevant information. These insights are crucial for enhancing\nthe design and implementation of RAG systems, underscoring the importance of\nselecting an appropriate chunk size to achieve superior performance.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing a new hyper-parameter for RAG: Context Window Utilization\",\"authors\":\"Kush Juvekar, Anupam Purwar\",\"doi\":\"arxiv-2407.19794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new hyper-parameter for Retrieval-Augmented\\nGeneration (RAG) systems called Context Window Utilization. RAG systems enhance\\ngenerative models by incorporating relevant information retrieved from external\\nknowledge bases, improving the factual accuracy and contextual relevance of\\ngenerated responses. The size of the text chunks retrieved and processed is a\\ncritical factor influencing RAG performance. This study aims to identify the\\noptimal chunk size that maximizes answer generation quality. Through systematic\\nexperimentation, we analyze the effects of varying chunk sizes on the\\nefficiency and effectiveness of RAG frameworks. Our findings reveal that an\\noptimal chunk size balances the trade-off between providing sufficient context\\nand minimizing irrelevant information. These insights are crucial for enhancing\\nthe design and implementation of RAG systems, underscoring the importance of\\nselecting an appropriate chunk size to achieve superior performance.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文为检索增强生成(RAG)系统引入了一个新的超参数,称为 "上下文窗口利用率"。RAG 系统通过纳入从外部知识库检索到的相关信息来增强生成模型,从而提高生成的回复的事实准确性和上下文相关性。检索和处理文本块的大小是影响 RAG 性能的关键因素。本研究旨在确定能最大限度提高答案生成质量的最佳块大小。通过系统实验,我们分析了不同块大小对 RAG 框架效率和效果的影响。我们的研究结果表明,最佳的块大小可以在提供足够的上下文和尽量减少无关信息之间取得平衡。这些见解对于改进 RAG 系统的设计和实施至关重要,强调了选择适当的块大小以实现卓越性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing a new hyper-parameter for RAG: Context Window Utilization
This paper introduces a new hyper-parameter for Retrieval-Augmented Generation (RAG) systems called Context Window Utilization. RAG systems enhance generative models by incorporating relevant information retrieved from external knowledge bases, improving the factual accuracy and contextual relevance of generated responses. The size of the text chunks retrieved and processed is a critical factor influencing RAG performance. This study aims to identify the optimal chunk size that maximizes answer generation quality. Through systematic experimentation, we analyze the effects of varying chunk sizes on the efficiency and effectiveness of RAG frameworks. Our findings reveal that an optimal chunk size balances the trade-off between providing sufficient context and minimizing irrelevant information. These insights are crucial for enhancing the design and implementation of RAG systems, underscoring the importance of selecting an appropriate chunk size to achieve superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1