{"title":"无线传感器网络中基于元搜索优化的聚类与路由协议","authors":"Chinnarao Kurangi, Kiran Kumar Paidipati, A. Siva Krishna Reddy, Jayasankar Uthayakumar, Ganesan Kadiravan, Shabana Parveen","doi":"10.1002/dac.5914","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In recent years, the use of wireless sensor devices in several applications, for example, monitoring in dangerous geographical spaces and the Internet of Things, has dramatically increased. Though sensor nodes (SNs) have limited power, battery replacement is not feasible in most cases. Therefore, energy saving in wireless sensor networks (WSN) is the major concern in the design of effective transmission protocol. Clustering might lower energy usage and increase network lifetime. Routing protocol for WSN represents an engineering area that has gained considerable interest among researchers due to its rapid evolution and development. Among them, the clustering routing protocol corresponds to the most effective technique to manage the energy consumption of each SN. In this manuscript, we focus on the design of a new metaheuristic optimization-based energy-aware clustering with routing protocol for lifetime maximization (MOEACR-LM) method in WSN. The purpose of the MOEACR-LM method is to improve network efficiency via proper selection of cluster heads (CHs) and effective data transmission. Initially, a hunter–prey optimization (HPO) method-based clustering technique is used for cluster construction and the CH selection process. Next, the clouded leopard optimization (CLO) model is used for the route selection process in WSN. The HPO and CLO models derive a fitness function involving multiple parameters for clustering and routing processes. A comprehensive experimental analysis is carried out to demonstrate the enhanced performance of the MOEACR-LM technique. The overall comparison study pointed out the improved energy efficiency results of the MOEACR-LM technique over other existing approaches.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 16","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metaheuristic optimization-based clustering with routing protocol in wireless sensor networks\",\"authors\":\"Chinnarao Kurangi, Kiran Kumar Paidipati, A. Siva Krishna Reddy, Jayasankar Uthayakumar, Ganesan Kadiravan, Shabana Parveen\",\"doi\":\"10.1002/dac.5914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In recent years, the use of wireless sensor devices in several applications, for example, monitoring in dangerous geographical spaces and the Internet of Things, has dramatically increased. Though sensor nodes (SNs) have limited power, battery replacement is not feasible in most cases. Therefore, energy saving in wireless sensor networks (WSN) is the major concern in the design of effective transmission protocol. Clustering might lower energy usage and increase network lifetime. Routing protocol for WSN represents an engineering area that has gained considerable interest among researchers due to its rapid evolution and development. Among them, the clustering routing protocol corresponds to the most effective technique to manage the energy consumption of each SN. In this manuscript, we focus on the design of a new metaheuristic optimization-based energy-aware clustering with routing protocol for lifetime maximization (MOEACR-LM) method in WSN. The purpose of the MOEACR-LM method is to improve network efficiency via proper selection of cluster heads (CHs) and effective data transmission. Initially, a hunter–prey optimization (HPO) method-based clustering technique is used for cluster construction and the CH selection process. Next, the clouded leopard optimization (CLO) model is used for the route selection process in WSN. The HPO and CLO models derive a fitness function involving multiple parameters for clustering and routing processes. A comprehensive experimental analysis is carried out to demonstrate the enhanced performance of the MOEACR-LM technique. The overall comparison study pointed out the improved energy efficiency results of the MOEACR-LM technique over other existing approaches.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 16\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.5914\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5914","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Metaheuristic optimization-based clustering with routing protocol in wireless sensor networks
In recent years, the use of wireless sensor devices in several applications, for example, monitoring in dangerous geographical spaces and the Internet of Things, has dramatically increased. Though sensor nodes (SNs) have limited power, battery replacement is not feasible in most cases. Therefore, energy saving in wireless sensor networks (WSN) is the major concern in the design of effective transmission protocol. Clustering might lower energy usage and increase network lifetime. Routing protocol for WSN represents an engineering area that has gained considerable interest among researchers due to its rapid evolution and development. Among them, the clustering routing protocol corresponds to the most effective technique to manage the energy consumption of each SN. In this manuscript, we focus on the design of a new metaheuristic optimization-based energy-aware clustering with routing protocol for lifetime maximization (MOEACR-LM) method in WSN. The purpose of the MOEACR-LM method is to improve network efficiency via proper selection of cluster heads (CHs) and effective data transmission. Initially, a hunter–prey optimization (HPO) method-based clustering technique is used for cluster construction and the CH selection process. Next, the clouded leopard optimization (CLO) model is used for the route selection process in WSN. The HPO and CLO models derive a fitness function involving multiple parameters for clustering and routing processes. A comprehensive experimental analysis is carried out to demonstrate the enhanced performance of the MOEACR-LM technique. The overall comparison study pointed out the improved energy efficiency results of the MOEACR-LM technique over other existing approaches.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.