Abraham A.J. Kerssemakers, Jayanth Krishnan, Kevin Rychel, Daniel Craig Zielinski, Bernhard Palsson, Suresh Sudarsan
{"title":"利用机器学习破译脂溶性亚罗菌的转录调控网络","authors":"Abraham A.J. Kerssemakers, Jayanth Krishnan, Kevin Rychel, Daniel Craig Zielinski, Bernhard Palsson, Suresh Sudarsan","doi":"10.1101/2024.07.29.605545","DOIUrl":null,"url":null,"abstract":"The transcriptional regulatory network (TRN) in Yarrowia lipolytica coordinates its cellular processes, including the response to various stimuli. The TRN has been difficult to study due to its complex nature. In industrial-size fermenters, environments are often not homogenous, resulting in Yarrowia experiencing fluctuating conditions during a fermentation. Compared with homogenous laboratory conditions, these fluctuations result in altered cellular states and behaviours due to the action of the TRN. Here, a machine learning approach was deployed to modularize the transcriptome to enable meaningful description of its changing composition. To provide a sufficiently broad dataset, a wide range of relevant fermentation conditions\n(nutrient limitations, growth rates, pH values, oxygen availability and CO2 stresses) were run and samples obtained for RNA-Seq generation. We thus significantly increased the number of publicly available transcriptomic dataset on Y. lipolytica W29. In total, 23 independently modulated gene sets (termed iModulons) were identified of which 9 could be linked to corresponding regulons in S. cerevisiae. Strong responses were found in relation to oxygen limitation and elevated CO2 concentrations represented by (i) altered ribosomal protein synthesis, (ii) cell cycle disturbances, (iii) respiratory gene expression, and (iv) redox homeostasis. These results provide a fine-grained systems-level understanding of the Y. lipolytica TRN in response to industrially meaningful stresses, providing engineering targets to design more robust production strains. Moreover, this study provides a guide to perform similar work with poorly characterized single-cellular eukaryotic organisms.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the transcriptional regulatory network of Yarrowia lipolytica using machine learning\",\"authors\":\"Abraham A.J. Kerssemakers, Jayanth Krishnan, Kevin Rychel, Daniel Craig Zielinski, Bernhard Palsson, Suresh Sudarsan\",\"doi\":\"10.1101/2024.07.29.605545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transcriptional regulatory network (TRN) in Yarrowia lipolytica coordinates its cellular processes, including the response to various stimuli. The TRN has been difficult to study due to its complex nature. In industrial-size fermenters, environments are often not homogenous, resulting in Yarrowia experiencing fluctuating conditions during a fermentation. Compared with homogenous laboratory conditions, these fluctuations result in altered cellular states and behaviours due to the action of the TRN. Here, a machine learning approach was deployed to modularize the transcriptome to enable meaningful description of its changing composition. To provide a sufficiently broad dataset, a wide range of relevant fermentation conditions\\n(nutrient limitations, growth rates, pH values, oxygen availability and CO2 stresses) were run and samples obtained for RNA-Seq generation. We thus significantly increased the number of publicly available transcriptomic dataset on Y. lipolytica W29. In total, 23 independently modulated gene sets (termed iModulons) were identified of which 9 could be linked to corresponding regulons in S. cerevisiae. Strong responses were found in relation to oxygen limitation and elevated CO2 concentrations represented by (i) altered ribosomal protein synthesis, (ii) cell cycle disturbances, (iii) respiratory gene expression, and (iv) redox homeostasis. These results provide a fine-grained systems-level understanding of the Y. lipolytica TRN in response to industrially meaningful stresses, providing engineering targets to design more robust production strains. Moreover, this study provides a guide to perform similar work with poorly characterized single-cellular eukaryotic organisms.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.29.605545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.29.605545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deciphering the transcriptional regulatory network of Yarrowia lipolytica using machine learning
The transcriptional regulatory network (TRN) in Yarrowia lipolytica coordinates its cellular processes, including the response to various stimuli. The TRN has been difficult to study due to its complex nature. In industrial-size fermenters, environments are often not homogenous, resulting in Yarrowia experiencing fluctuating conditions during a fermentation. Compared with homogenous laboratory conditions, these fluctuations result in altered cellular states and behaviours due to the action of the TRN. Here, a machine learning approach was deployed to modularize the transcriptome to enable meaningful description of its changing composition. To provide a sufficiently broad dataset, a wide range of relevant fermentation conditions
(nutrient limitations, growth rates, pH values, oxygen availability and CO2 stresses) were run and samples obtained for RNA-Seq generation. We thus significantly increased the number of publicly available transcriptomic dataset on Y. lipolytica W29. In total, 23 independently modulated gene sets (termed iModulons) were identified of which 9 could be linked to corresponding regulons in S. cerevisiae. Strong responses were found in relation to oxygen limitation and elevated CO2 concentrations represented by (i) altered ribosomal protein synthesis, (ii) cell cycle disturbances, (iii) respiratory gene expression, and (iv) redox homeostasis. These results provide a fine-grained systems-level understanding of the Y. lipolytica TRN in response to industrially meaningful stresses, providing engineering targets to design more robust production strains. Moreover, this study provides a guide to perform similar work with poorly characterized single-cellular eukaryotic organisms.