TianTian Meng, YuZhen Wei, Hong Chen, Xu Huang, Min Jiang
{"title":"利用集群信道实现任意双量子比特态的多跳容错远程传输","authors":"TianTian Meng, YuZhen Wei, Hong Chen, Xu Huang, Min Jiang","doi":"10.1364/josab.523965","DOIUrl":null,"url":null,"abstract":"In this paper, we propose one multi-hop fault-tolerant teleportation scheme leveraging non-maximally entangled cluster states as the quantum channel, which is crucial for efficient transmission over extended distances. During quantum communication, environmental noise may introduce operational errors between adjacent nodes. In order to uphold the maximum transmission efficiency, error correction operations are exclusively conducted by the ultimate receiver rather than intermediate nodes. Error outcomes from each node can be synchronously relayed to the receiver via the classical channel, effectively diminishing the delays and operational intricacies, thereby significantly bolstering the transmission efficiency. Moreover, we utilize the Quirk simulation software to simulate the teleportation process.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-hop fault-tolerant teleportation of arbitrary two-qubit states with cluster channel\",\"authors\":\"TianTian Meng, YuZhen Wei, Hong Chen, Xu Huang, Min Jiang\",\"doi\":\"10.1364/josab.523965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose one multi-hop fault-tolerant teleportation scheme leveraging non-maximally entangled cluster states as the quantum channel, which is crucial for efficient transmission over extended distances. During quantum communication, environmental noise may introduce operational errors between adjacent nodes. In order to uphold the maximum transmission efficiency, error correction operations are exclusively conducted by the ultimate receiver rather than intermediate nodes. Error outcomes from each node can be synchronously relayed to the receiver via the classical channel, effectively diminishing the delays and operational intricacies, thereby significantly bolstering the transmission efficiency. Moreover, we utilize the Quirk simulation software to simulate the teleportation process.\",\"PeriodicalId\":501621,\"journal\":{\"name\":\"Journal of the Optical Society of America B\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josab.523965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.523965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-hop fault-tolerant teleportation of arbitrary two-qubit states with cluster channel
In this paper, we propose one multi-hop fault-tolerant teleportation scheme leveraging non-maximally entangled cluster states as the quantum channel, which is crucial for efficient transmission over extended distances. During quantum communication, environmental noise may introduce operational errors between adjacent nodes. In order to uphold the maximum transmission efficiency, error correction operations are exclusively conducted by the ultimate receiver rather than intermediate nodes. Error outcomes from each node can be synchronously relayed to the receiver via the classical channel, effectively diminishing the delays and operational intricacies, thereby significantly bolstering the transmission efficiency. Moreover, we utilize the Quirk simulation software to simulate the teleportation process.