Chunmiao Hu , Xiaoli He , Huimin Zhang , Xiangyu Hu , Liting Liao , Minmin Cai , Zhijie Lin , Jie Xiang , Xiaoqin Jia , Guotao Lu , Weiming Xiao , Yisheng Feng , Weijuan Gong
{"title":"丹参酮 I 通过与 Syk 对接限制巨噬细胞炎性体的激活,从而缓解 DSS 诱导的小鼠结肠炎","authors":"Chunmiao Hu , Xiaoli He , Huimin Zhang , Xiangyu Hu , Liting Liao , Minmin Cai , Zhijie Lin , Jie Xiang , Xiaoqin Jia , Guotao Lu , Weiming Xiao , Yisheng Feng , Weijuan Gong","doi":"10.1016/j.molimm.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Tanshinone I (Tan I) has been proven to exert an anti-inflammatory effect, but the complete mechanism remains unclear. In this study, Tan I was described to have no effect on Syk expression in resting or LPS-stimulated macrophages <em>ex vivo</em>, but dramatically suppressed Syk phosphorylation and CD80, CD86, and IL-1β expression of macrophages. The inflammatory activity of macrophages in ApoC3-transgenic (ApoC3<sup>TG</sup>) mice is upregulated by Syk activation. Tan I was determined to downregulate Syk phosphorylation and inflammatory activity of macrophages in ApoC3<sup>TG</sup> mice, both <em>ex vivo</em> and <em>in vivo</em>. Intraperitoneal injection of Tan I (4 mg/kg) effectively alleviated DSS-induced colitis in mice, accompanying with suppressing the activation of intestinal macrophages. Mechanistically, Tan I-treated macrophages exhibited a decrease in cytoplasmic ROS, NLRP3, GSDMD, and IL-1β, which suggested that the alternative pathway of inflammasome activation in macrophages was suppressed. The SPR assay demonstrated that Tan I bound to Syk protein with a dissociation constant (KD) of 2.473 × 10<sup>−6</sup> M. When Syk expression was knocked down by its shRNA, the inhibitory effects of Tan I on macrophages were blocked. Collectively, Tanshinone I effectively alleviated DSS-induced colitis in mice by inhibiting Syk-stimulated inflammasome activation, hence suppressing the inflammatory activity of macrophages.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tanshinone I limits inflammasome activation of macrophage via docking into Syk to alleviate DSS-induced colitis in mice\",\"authors\":\"Chunmiao Hu , Xiaoli He , Huimin Zhang , Xiangyu Hu , Liting Liao , Minmin Cai , Zhijie Lin , Jie Xiang , Xiaoqin Jia , Guotao Lu , Weiming Xiao , Yisheng Feng , Weijuan Gong\",\"doi\":\"10.1016/j.molimm.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tanshinone I (Tan I) has been proven to exert an anti-inflammatory effect, but the complete mechanism remains unclear. In this study, Tan I was described to have no effect on Syk expression in resting or LPS-stimulated macrophages <em>ex vivo</em>, but dramatically suppressed Syk phosphorylation and CD80, CD86, and IL-1β expression of macrophages. The inflammatory activity of macrophages in ApoC3-transgenic (ApoC3<sup>TG</sup>) mice is upregulated by Syk activation. Tan I was determined to downregulate Syk phosphorylation and inflammatory activity of macrophages in ApoC3<sup>TG</sup> mice, both <em>ex vivo</em> and <em>in vivo</em>. Intraperitoneal injection of Tan I (4 mg/kg) effectively alleviated DSS-induced colitis in mice, accompanying with suppressing the activation of intestinal macrophages. Mechanistically, Tan I-treated macrophages exhibited a decrease in cytoplasmic ROS, NLRP3, GSDMD, and IL-1β, which suggested that the alternative pathway of inflammasome activation in macrophages was suppressed. The SPR assay demonstrated that Tan I bound to Syk protein with a dissociation constant (KD) of 2.473 × 10<sup>−6</sup> M. When Syk expression was knocked down by its shRNA, the inhibitory effects of Tan I on macrophages were blocked. Collectively, Tanshinone I effectively alleviated DSS-induced colitis in mice by inhibiting Syk-stimulated inflammasome activation, hence suppressing the inflammatory activity of macrophages.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0161589024001354\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589024001354","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
丹参酮 I(Tan I)已被证实具有抗炎作用,但其完整机制仍不清楚。这项研究表明,丹参酮 I 对静息或 LPS 刺激的巨噬细胞中 Syk 的表达没有影响,但能显著抑制巨噬细胞中 Syk 的磷酸化以及 CD80、CD86 和 IL-1β 的表达。Syk激活会上调载脂蛋白C3转基因(ApoC3)小鼠巨噬细胞的炎症活性。腹腔注射 Tan I(4 毫克/千克)可有效缓解 DSS 诱导的小鼠结肠炎,同时抑制肠道巨噬细胞的活化。从机理上讲,经 Tan I 处理的巨噬细胞表现出细胞质 ROS、NLRP3、GSDMD 和 IL-1β 的减少,这表明巨噬细胞中的炎性体活化替代途径受到了抑制。SPR 分析表明,Tan I 与 Syk 蛋白结合的解离常数(KD)为 2.473 × 10 M。当用 shRNA 敲低 Syk 表达时,丹参酮 I 对巨噬细胞的抑制作用被阻断。综上所述,丹参酮 I 通过抑制 Syk 刺激的炎性体活化,从而抑制巨噬细胞的炎症活性,有效缓解了 DSS 诱导的小鼠结肠炎。
Tanshinone I limits inflammasome activation of macrophage via docking into Syk to alleviate DSS-induced colitis in mice
Tanshinone I (Tan I) has been proven to exert an anti-inflammatory effect, but the complete mechanism remains unclear. In this study, Tan I was described to have no effect on Syk expression in resting or LPS-stimulated macrophages ex vivo, but dramatically suppressed Syk phosphorylation and CD80, CD86, and IL-1β expression of macrophages. The inflammatory activity of macrophages in ApoC3-transgenic (ApoC3TG) mice is upregulated by Syk activation. Tan I was determined to downregulate Syk phosphorylation and inflammatory activity of macrophages in ApoC3TG mice, both ex vivo and in vivo. Intraperitoneal injection of Tan I (4 mg/kg) effectively alleviated DSS-induced colitis in mice, accompanying with suppressing the activation of intestinal macrophages. Mechanistically, Tan I-treated macrophages exhibited a decrease in cytoplasmic ROS, NLRP3, GSDMD, and IL-1β, which suggested that the alternative pathway of inflammasome activation in macrophages was suppressed. The SPR assay demonstrated that Tan I bound to Syk protein with a dissociation constant (KD) of 2.473 × 10−6 M. When Syk expression was knocked down by its shRNA, the inhibitory effects of Tan I on macrophages were blocked. Collectively, Tanshinone I effectively alleviated DSS-induced colitis in mice by inhibiting Syk-stimulated inflammasome activation, hence suppressing the inflammatory activity of macrophages.