预测小鼠癌症肿瘤的进展:一种机器和深度学习直觉

Amit K Chattopadhyay, Aimee Pascaline N Unkundiye, Gillian Pearce, Steven Russell
{"title":"预测小鼠癌症肿瘤的进展:一种机器和深度学习直觉","authors":"Amit K Chattopadhyay, Aimee Pascaline N Unkundiye, Gillian Pearce, Steven Russell","doi":"arxiv-2407.19277","DOIUrl":null,"url":null,"abstract":"The study explores Artificial Intelligence (AI) powered modeling to predict\nthe evolution of cancer tumor cells in mice under different forms of treatment.\nThe AI models are analyzed against varying ambient and systemic parameters,\ne.g. drug dosage, volume of the cancer cell mass, and time taken to destroy the\ncancer cell mass. The data required for the analysis have been synthetically\nextracted from plots available in both published and unpublished literature\n(primarily using a Matlab architecture called \"Grabit\"), that are then\nstatistically standardized around the same baseline for comparison. Three forms\nof treatment are considered - saline (multiple concentrations used), magnetic\nnanoparticles (mNPs) and fluorodeoxyglycose iron oxide magnetic nanoparticles\n(mNP-FDGs) - analyzed using three Machine Learning (ML) algorithms, Decision\nTree (DT), Random Forest (RF), Multilinear Regression (MLR), and a Deep\nLearning (DL) module, the Adaptive Neural Network (ANN). The AI models are\ntrained on 60-80% data, the rest used for validation. Assessed over all three\nforms of treatment, ANN consistently outperforms other predictive models. Our\nmodels predict mNP-FDG as the most potent treatment regime that kills the\ncancerous tumor completely in ca 13 days from the start of treatment. The\nmodels can be generalized to other forms of cancer treatment regimens.","PeriodicalId":501040,"journal":{"name":"arXiv - PHYS - Biological Physics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Progression of Cancerous Tumors in Mice: A Machine and Deep Learning Intuition\",\"authors\":\"Amit K Chattopadhyay, Aimee Pascaline N Unkundiye, Gillian Pearce, Steven Russell\",\"doi\":\"arxiv-2407.19277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study explores Artificial Intelligence (AI) powered modeling to predict\\nthe evolution of cancer tumor cells in mice under different forms of treatment.\\nThe AI models are analyzed against varying ambient and systemic parameters,\\ne.g. drug dosage, volume of the cancer cell mass, and time taken to destroy the\\ncancer cell mass. The data required for the analysis have been synthetically\\nextracted from plots available in both published and unpublished literature\\n(primarily using a Matlab architecture called \\\"Grabit\\\"), that are then\\nstatistically standardized around the same baseline for comparison. Three forms\\nof treatment are considered - saline (multiple concentrations used), magnetic\\nnanoparticles (mNPs) and fluorodeoxyglycose iron oxide magnetic nanoparticles\\n(mNP-FDGs) - analyzed using three Machine Learning (ML) algorithms, Decision\\nTree (DT), Random Forest (RF), Multilinear Regression (MLR), and a Deep\\nLearning (DL) module, the Adaptive Neural Network (ANN). The AI models are\\ntrained on 60-80% data, the rest used for validation. Assessed over all three\\nforms of treatment, ANN consistently outperforms other predictive models. Our\\nmodels predict mNP-FDG as the most potent treatment regime that kills the\\ncancerous tumor completely in ca 13 days from the start of treatment. The\\nmodels can be generalized to other forms of cancer treatment regimens.\",\"PeriodicalId\":501040,\"journal\":{\"name\":\"arXiv - PHYS - Biological Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究探索了以人工智能(AI)为动力的建模方法,以预测不同治疗方式下小鼠体内癌症肿瘤细胞的演变过程。人工智能模型根据不同的环境和系统参数(如药物剂量、癌细胞体积和消灭癌细胞所需的时间)进行分析。分析所需的数据是从已发表和未发表的文献(主要使用名为 "Grabit "的 Matlab 架构)中合成提取的。考虑了三种治疗形式--生理盐水(使用多种浓度)、磁性纳米粒子(mNPs)和氟脱氧甘糖氧化铁磁性纳米粒子(mNP-FDGs)--使用三种机器学习(ML)算法进行分析:决策树(DT)、随机森林(RF)、多线性回归(MLR)和深度学习(DL)模块--自适应神经网络(ANN)。人工智能模型在 60-80% 的数据上进行训练,其余数据用于验证。在所有三种形式的治疗中,ANN 的表现始终优于其他预测模型。我们的模型预测 mNP-FDG 是最有效的治疗方案,能在治疗开始后的 13 天内完全杀死癌肿瘤。这些模型可以推广到其他形式的癌症治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Progression of Cancerous Tumors in Mice: A Machine and Deep Learning Intuition
The study explores Artificial Intelligence (AI) powered modeling to predict the evolution of cancer tumor cells in mice under different forms of treatment. The AI models are analyzed against varying ambient and systemic parameters, e.g. drug dosage, volume of the cancer cell mass, and time taken to destroy the cancer cell mass. The data required for the analysis have been synthetically extracted from plots available in both published and unpublished literature (primarily using a Matlab architecture called "Grabit"), that are then statistically standardized around the same baseline for comparison. Three forms of treatment are considered - saline (multiple concentrations used), magnetic nanoparticles (mNPs) and fluorodeoxyglycose iron oxide magnetic nanoparticles (mNP-FDGs) - analyzed using three Machine Learning (ML) algorithms, Decision Tree (DT), Random Forest (RF), Multilinear Regression (MLR), and a Deep Learning (DL) module, the Adaptive Neural Network (ANN). The AI models are trained on 60-80% data, the rest used for validation. Assessed over all three forms of treatment, ANN consistently outperforms other predictive models. Our models predict mNP-FDG as the most potent treatment regime that kills the cancerous tumor completely in ca 13 days from the start of treatment. The models can be generalized to other forms of cancer treatment regimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Thresholds in Presence of Epistatic Interactions Choice of Reference Surfaces to assess Plant Health through leaf scale temperature monitoring Physical Insights into Electromagnetic Efficiency of Wireless Implantable Bioelectronics Pseudo-RNA with parallel aligned single-strands and periodic base sequence as a new universality class Hydrodynamic hovering of swimming bacteria above surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1