介电元表面光子不可分性的单次表征

IF 8.4 1区 物理与天体物理 Q1 OPTICS Optica Pub Date : 2024-04-11 DOI:10.1364/optica.516064
Jihua Zhang, Jinyong Ma, Neuton Li, Shaun Lung, Andrey A. Sukhorukov
{"title":"介电元表面光子不可分性的单次表征","authors":"Jihua Zhang, Jinyong Ma, Neuton Li, Shaun Lung, Andrey A. Sukhorukov","doi":"10.1364/optica.516064","DOIUrl":null,"url":null,"abstract":"Characterizing the indistinguishability of photons is a key task in quantum photonics, underpinning the tuning and stabilization of the photon sources and thereby increasing the accuracy of quantum operations. The protocols for measuring the degree of indistinguishability conventionally require photon-coincidence measurements at several different time or phase delays, which is a fundamental bottleneck towards fast measurements and real-time monitoring of indistinguishability. Here, we develop a static dielectric metasurface grating without any reconfigurable elements that realizes a tailored multiport transformation in the free-space configuration without the need for phase locking and enables single-shot characterization of the indistinguishability between two photons in multiple degrees of freedom including time, spectrum, spatial modes, and polarization. Topology optimization is employed to design a silicon metasurface with polarization independence, high transmission, and high tolerance to measurement noise. We fabricate the metasurface and experimentally quantify the indistinguishability of photons in the time domain with fidelity over 98.4%. We anticipate that the developed framework based on ultrathin metasurfaces can be further extended for multi-photon states and additional degrees of freedom associated with spatial modalities.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"13 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-shot characterization of photon indistinguishability with dielectric metasurfaces\",\"authors\":\"Jihua Zhang, Jinyong Ma, Neuton Li, Shaun Lung, Andrey A. Sukhorukov\",\"doi\":\"10.1364/optica.516064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterizing the indistinguishability of photons is a key task in quantum photonics, underpinning the tuning and stabilization of the photon sources and thereby increasing the accuracy of quantum operations. The protocols for measuring the degree of indistinguishability conventionally require photon-coincidence measurements at several different time or phase delays, which is a fundamental bottleneck towards fast measurements and real-time monitoring of indistinguishability. Here, we develop a static dielectric metasurface grating without any reconfigurable elements that realizes a tailored multiport transformation in the free-space configuration without the need for phase locking and enables single-shot characterization of the indistinguishability between two photons in multiple degrees of freedom including time, spectrum, spatial modes, and polarization. Topology optimization is employed to design a silicon metasurface with polarization independence, high transmission, and high tolerance to measurement noise. We fabricate the metasurface and experimentally quantify the indistinguishability of photons in the time domain with fidelity over 98.4%. We anticipate that the developed framework based on ultrathin metasurfaces can be further extended for multi-photon states and additional degrees of freedom associated with spatial modalities.\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.516064\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.516064","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

鉴定光子的不可分性是量子光子学的一项关键任务,它是调整和稳定光子源的基础,从而提高量子操作的精确度。测量不可分性程度的协议通常需要在多个不同的时间或相位延迟下进行光子共振测量,这是实现快速测量和实时监控不可分性的基本瓶颈。在这里,我们开发了一种没有任何可重构元件的静态介质元面光栅,它能在自由空间配置中实现定制的多端口转换,而无需锁相,并能在包括时间、光谱、空间模式和偏振在内的多个自由度中对两个光子之间的不可分性进行单次表征。通过拓扑优化设计出的硅元表面具有偏振无关性、高透射率和对测量噪声的高耐受性。我们制作了元表面,并通过实验量化了光子在时域中的不可分辨性,保真度超过 98.4%。我们预计,基于超薄元表面开发的框架可以进一步扩展到多光子态以及与空间模态相关的其他自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-shot characterization of photon indistinguishability with dielectric metasurfaces
Characterizing the indistinguishability of photons is a key task in quantum photonics, underpinning the tuning and stabilization of the photon sources and thereby increasing the accuracy of quantum operations. The protocols for measuring the degree of indistinguishability conventionally require photon-coincidence measurements at several different time or phase delays, which is a fundamental bottleneck towards fast measurements and real-time monitoring of indistinguishability. Here, we develop a static dielectric metasurface grating without any reconfigurable elements that realizes a tailored multiport transformation in the free-space configuration without the need for phase locking and enables single-shot characterization of the indistinguishability between two photons in multiple degrees of freedom including time, spectrum, spatial modes, and polarization. Topology optimization is employed to design a silicon metasurface with polarization independence, high transmission, and high tolerance to measurement noise. We fabricate the metasurface and experimentally quantify the indistinguishability of photons in the time domain with fidelity over 98.4%. We anticipate that the developed framework based on ultrathin metasurfaces can be further extended for multi-photon states and additional degrees of freedom associated with spatial modalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica
Optica OPTICS-
CiteScore
19.70
自引率
2.90%
发文量
191
审稿时长
2 months
期刊介绍: Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.
期刊最新文献
Integrated chirped photonic-crystal cavities in gallium phosphide for broadband soliton generation Photonic quantum walk with ultrafast time-bin encoding Control-free and efficient integrated photonic neural networks via hardware-aware training and pruning Piezoelectrically tunable, narrow linewidth photonic integrated extended-DBR lasers Hyperentanglement quantum communication over a 50 km noisy fiber channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1