{"title":"国际汉语可视化教学与职业技能培训的整合:利用注意力-连接主义时序分类模型","authors":"Yuan Yao, Zhujun Dai, Muhammad Shahbaz","doi":"10.7717/peerj-cs.2223","DOIUrl":null,"url":null,"abstract":"The teaching of Chinese as a second language has become increasingly crucial for promoting cross-cultural exchange and mutual learning worldwide. However, traditional approaches to international Chinese language teaching have limitations that hinder their effectiveness, such as outdated teaching materials, lack of qualified instructors, and limited access to learning facilities. To overcome these challenges, it is imperative to develop intelligent and visually engaging methods for teaching international Chinese language learners. In this article, we propose leveraging speech recognition technology within artificial intelligence to create an oral assistance platform that provides visualized pinyin-formatted feedback to learners. Additionally, this system can identify accent errors and provide vocational skills training to improve learners’ communication abilities. To achieve this, we propose the Attention-Connectionist Temporal Classification (CTC) model, which utilizes a specific temporal convolutional neural network to capture the location information necessary for accurate speech recognition. Our experimental results demonstrate that this model outperforms similar approaches, with significant reductions in error rates for both validation and test sets, compared with the original Attention model, Claim, Evidence, Reasoning (CER) is reduced by 0.67%. Overall, our proposed approach has significant potential for enhancing the efficiency and effectiveness of vocational skills training for international Chinese language learners.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"22 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating international Chinese visualization teaching and vocational skills training: leveraging attention-connectionist temporal classification models\",\"authors\":\"Yuan Yao, Zhujun Dai, Muhammad Shahbaz\",\"doi\":\"10.7717/peerj-cs.2223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The teaching of Chinese as a second language has become increasingly crucial for promoting cross-cultural exchange and mutual learning worldwide. However, traditional approaches to international Chinese language teaching have limitations that hinder their effectiveness, such as outdated teaching materials, lack of qualified instructors, and limited access to learning facilities. To overcome these challenges, it is imperative to develop intelligent and visually engaging methods for teaching international Chinese language learners. In this article, we propose leveraging speech recognition technology within artificial intelligence to create an oral assistance platform that provides visualized pinyin-formatted feedback to learners. Additionally, this system can identify accent errors and provide vocational skills training to improve learners’ communication abilities. To achieve this, we propose the Attention-Connectionist Temporal Classification (CTC) model, which utilizes a specific temporal convolutional neural network to capture the location information necessary for accurate speech recognition. Our experimental results demonstrate that this model outperforms similar approaches, with significant reductions in error rates for both validation and test sets, compared with the original Attention model, Claim, Evidence, Reasoning (CER) is reduced by 0.67%. Overall, our proposed approach has significant potential for enhancing the efficiency and effectiveness of vocational skills training for international Chinese language learners.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2223\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2223","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Integrating international Chinese visualization teaching and vocational skills training: leveraging attention-connectionist temporal classification models
The teaching of Chinese as a second language has become increasingly crucial for promoting cross-cultural exchange and mutual learning worldwide. However, traditional approaches to international Chinese language teaching have limitations that hinder their effectiveness, such as outdated teaching materials, lack of qualified instructors, and limited access to learning facilities. To overcome these challenges, it is imperative to develop intelligent and visually engaging methods for teaching international Chinese language learners. In this article, we propose leveraging speech recognition technology within artificial intelligence to create an oral assistance platform that provides visualized pinyin-formatted feedback to learners. Additionally, this system can identify accent errors and provide vocational skills training to improve learners’ communication abilities. To achieve this, we propose the Attention-Connectionist Temporal Classification (CTC) model, which utilizes a specific temporal convolutional neural network to capture the location information necessary for accurate speech recognition. Our experimental results demonstrate that this model outperforms similar approaches, with significant reductions in error rates for both validation and test sets, compared with the original Attention model, Claim, Evidence, Reasoning (CER) is reduced by 0.67%. Overall, our proposed approach has significant potential for enhancing the efficiency and effectiveness of vocational skills training for international Chinese language learners.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.