{"title":"基于样条的多元域函数数据方法","authors":"Rani Basna, Hiba Nassar, Krzysztof Podgórski","doi":"10.1186/s13362-024-00153-w","DOIUrl":null,"url":null,"abstract":"Functional data analysis is typically performed in two steps: first, functionally representing discrete observations, and then applying functional methods to the so-represented data. The initial choice of a functional representation may have a significant impact on the second phase of the analysis, as shown in recent research, where data-driven spline bases outperformed the predefined rigid choice of functional representation. The method chooses an initial functional basis by an efficient placement of the knots using a simple machine-learning algorithm. The knot selection approach does not apply directly when the data are defined on domains of a higher dimension than one such as, for example, images. The reason is that in higher dimensions the convenient and numerically efficient spline spaces use tensor bases that require knots located on a lattice. This fundamentally limits flexible knot placement which is fundamental for the approach. The goal of this research is two-fold: first, to propose modified approaches that circumvent the issue by coding the irregular knot selection into the topology of the spaces of tensor-based splines; second, to apply the approach to a classification problem workflow for functional data that utilizes knot selection. The performance is preliminarily accessed on a benchmark dataset and shown to be comparable to or better than the previous methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spline-based methods for functional data on multivariate domains\",\"authors\":\"Rani Basna, Hiba Nassar, Krzysztof Podgórski\",\"doi\":\"10.1186/s13362-024-00153-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional data analysis is typically performed in two steps: first, functionally representing discrete observations, and then applying functional methods to the so-represented data. The initial choice of a functional representation may have a significant impact on the second phase of the analysis, as shown in recent research, where data-driven spline bases outperformed the predefined rigid choice of functional representation. The method chooses an initial functional basis by an efficient placement of the knots using a simple machine-learning algorithm. The knot selection approach does not apply directly when the data are defined on domains of a higher dimension than one such as, for example, images. The reason is that in higher dimensions the convenient and numerically efficient spline spaces use tensor bases that require knots located on a lattice. This fundamentally limits flexible knot placement which is fundamental for the approach. The goal of this research is two-fold: first, to propose modified approaches that circumvent the issue by coding the irregular knot selection into the topology of the spaces of tensor-based splines; second, to apply the approach to a classification problem workflow for functional data that utilizes knot selection. The performance is preliminarily accessed on a benchmark dataset and shown to be comparable to or better than the previous methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13362-024-00153-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00153-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spline-based methods for functional data on multivariate domains
Functional data analysis is typically performed in two steps: first, functionally representing discrete observations, and then applying functional methods to the so-represented data. The initial choice of a functional representation may have a significant impact on the second phase of the analysis, as shown in recent research, where data-driven spline bases outperformed the predefined rigid choice of functional representation. The method chooses an initial functional basis by an efficient placement of the knots using a simple machine-learning algorithm. The knot selection approach does not apply directly when the data are defined on domains of a higher dimension than one such as, for example, images. The reason is that in higher dimensions the convenient and numerically efficient spline spaces use tensor bases that require knots located on a lattice. This fundamentally limits flexible knot placement which is fundamental for the approach. The goal of this research is two-fold: first, to propose modified approaches that circumvent the issue by coding the irregular knot selection into the topology of the spaces of tensor-based splines; second, to apply the approach to a classification problem workflow for functional data that utilizes knot selection. The performance is preliminarily accessed on a benchmark dataset and shown to be comparable to or better than the previous methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.