用于近似查询回答的部分自适应索引

Stavros Maroulis, Nikos Bikakis, Vassilis Stamatopoulos, George Papastefanatos
{"title":"用于近似查询回答的部分自适应索引","authors":"Stavros Maroulis, Nikos Bikakis, Vassilis Stamatopoulos, George Papastefanatos","doi":"arxiv-2407.18702","DOIUrl":null,"url":null,"abstract":"In data exploration, users need to analyze large data files quickly, aiming\nto minimize data-to-analysis time. While recent adaptive indexing approaches\naddress this need, they are cases where demonstrate poor performance.\nParticularly, during the initial queries, in regions with a high density of\nobjects, and in very large files over commodity hardware. This work introduces\nan approach for adaptive indexing driven by both query workload and\nuser-defined accuracy constraints to support approximate query answering. The\napproach is based on partial index adaptation which reduces the costs\nassociated with reading data files and refining indexes. We leverage a\nhierarchical tile-based indexing scheme and its stored metadata to provide\nefficient query evaluation, ensuring accuracy within user-specified bounds. Our\npreliminary evaluation demonstrates improvement on query evaluation time,\nespecially during initial user exploration.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Adaptive Indexing for Approximate Query Answering\",\"authors\":\"Stavros Maroulis, Nikos Bikakis, Vassilis Stamatopoulos, George Papastefanatos\",\"doi\":\"arxiv-2407.18702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data exploration, users need to analyze large data files quickly, aiming\\nto minimize data-to-analysis time. While recent adaptive indexing approaches\\naddress this need, they are cases where demonstrate poor performance.\\nParticularly, during the initial queries, in regions with a high density of\\nobjects, and in very large files over commodity hardware. This work introduces\\nan approach for adaptive indexing driven by both query workload and\\nuser-defined accuracy constraints to support approximate query answering. The\\napproach is based on partial index adaptation which reduces the costs\\nassociated with reading data files and refining indexes. We leverage a\\nhierarchical tile-based indexing scheme and its stored metadata to provide\\nefficient query evaluation, ensuring accuracy within user-specified bounds. Our\\npreliminary evaluation demonstrates improvement on query evaluation time,\\nespecially during initial user exploration.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数据探索过程中,用户需要快速分析大型数据文件,以尽量缩短数据到分析的时间。虽然最近的自适应索引方法满足了这一需求,但它们在一些情况下表现出了较差的性能,特别是在初始查询期间、对象密度较高的区域以及在使用商品硬件的超大文件中。这项工作介绍了一种由查询工作量和用户定义的准确性约束驱动的自适应索引方法,以支持近似查询回答。该方法基于部分索引自适应,可降低读取数据文件和完善索引的相关成本。我们利用基于层次的瓦片索引方案及其存储的元数据来提供高效的查询评估,确保准确性在用户指定的范围内。我们的初步评估结果表明,查询评估时间有所缩短,尤其是在用户初始探索期间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partial Adaptive Indexing for Approximate Query Answering
In data exploration, users need to analyze large data files quickly, aiming to minimize data-to-analysis time. While recent adaptive indexing approaches address this need, they are cases where demonstrate poor performance. Particularly, during the initial queries, in regions with a high density of objects, and in very large files over commodity hardware. This work introduces an approach for adaptive indexing driven by both query workload and user-defined accuracy constraints to support approximate query answering. The approach is based on partial index adaptation which reduces the costs associated with reading data files and refining indexes. We leverage a hierarchical tile-based indexing scheme and its stored metadata to provide efficient query evaluation, ensuring accuracy within user-specified bounds. Our preliminary evaluation demonstrates improvement on query evaluation time, especially during initial user exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1