Theo Heimel, Nathan Huetsch, Fabio Maltoni, Olivier Mattelaer, Tilman Plehn, Ramon Winterhalder
{"title":"重装上阵的疯狂国际学校","authors":"Theo Heimel, Nathan Huetsch, Fabio Maltoni, Olivier Mattelaer, Tilman Plehn, Ramon Winterhalder","doi":"10.21468/scipostphys.17.1.023","DOIUrl":null,"url":null,"abstract":"In pursuit of precise and fast theory predictions for the LHC, we present an implementation of the MadNIS method in the MadGraph event generator. A series of improvements in MadNIS further enhance its efficiency and speed. We validate this implementation for realistic partonic processes and find significant gains from using modern machine learning in event generators.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"87 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The MadNIS reloaded\",\"authors\":\"Theo Heimel, Nathan Huetsch, Fabio Maltoni, Olivier Mattelaer, Tilman Plehn, Ramon Winterhalder\",\"doi\":\"10.21468/scipostphys.17.1.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In pursuit of precise and fast theory predictions for the LHC, we present an implementation of the MadNIS method in the MadGraph event generator. A series of improvements in MadNIS further enhance its efficiency and speed. We validate this implementation for realistic partonic processes and find significant gains from using modern machine learning in event generators.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.1.023\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.1.023","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
In pursuit of precise and fast theory predictions for the LHC, we present an implementation of the MadNIS method in the MadGraph event generator. A series of improvements in MadNIS further enhance its efficiency and speed. We validate this implementation for realistic partonic processes and find significant gains from using modern machine learning in event generators.