NFLikelihood:无监督 DNNLikelihood(来自归一化流量的概率

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY SciPost Physics Pub Date : 2024-07-31 DOI:10.21468/scipostphyscore.7.3.048
Humberto Reyes-González, Riccardo Torre
{"title":"NFLikelihood:无监督 DNNLikelihood(来自归一化流量的概率","authors":"Humberto Reyes-González, Riccardo Torre","doi":"10.21468/scipostphyscore.7.3.048","DOIUrl":null,"url":null,"abstract":"We propose the NFLikelihood, an unsupervised version, based on Normalizing Flows, of the DNNLikelihood proposed in [Eur. Phys. J. C 80, 664 (2020)]. We show, through realistic examples, how Autoregressive Flows, based on affine and rational quadratic spline bijectors, are able to learn complicated high-dimensional Likelihoods arising in High Energy Physics (HEP) analyses. We focus on a toy LHC analysis example already considered in the literature and on two Effective Field Theory fits of flavor and electroweak observables, whose samples have been obtained through the HEPFit code. We discuss advantages and disadvantages of the unsupervised approach with respect to the supervised one and discuss a possible interplay between the two.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"51 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The NFLikelihood: An unsupervised DNNLikelihood from normalizing flows\",\"authors\":\"Humberto Reyes-González, Riccardo Torre\",\"doi\":\"10.21468/scipostphyscore.7.3.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the NFLikelihood, an unsupervised version, based on Normalizing Flows, of the DNNLikelihood proposed in [Eur. Phys. J. C 80, 664 (2020)]. We show, through realistic examples, how Autoregressive Flows, based on affine and rational quadratic spline bijectors, are able to learn complicated high-dimensional Likelihoods arising in High Energy Physics (HEP) analyses. We focus on a toy LHC analysis example already considered in the literature and on two Effective Field Theory fits of flavor and electroweak observables, whose samples have been obtained through the HEPFit code. We discuss advantages and disadvantages of the unsupervised approach with respect to the supervised one and discuss a possible interplay between the two.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphyscore.7.3.048\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphyscore.7.3.048","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出的 NFLikelihood 是[Eur. Phys. J. C 80, 664 (2020)]中提出的 DNNLikelihood 的无监督版本,基于归一化流。我们通过实际例子展示了基于仿射和有理二次样条曲线的自回归流如何学习高能物理(HEP)分析中出现的复杂高维似然。我们重点讨论了文献中已经考虑过的一个玩具大型强子对撞机分析实例,以及通过 HEPFit 代码获得的两个有效场理论拟合的味道和电弱观测变量样本。我们讨论了无监督方法与有监督方法的优缺点,并讨论了两者之间可能的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The NFLikelihood: An unsupervised DNNLikelihood from normalizing flows
We propose the NFLikelihood, an unsupervised version, based on Normalizing Flows, of the DNNLikelihood proposed in [Eur. Phys. J. C 80, 664 (2020)]. We show, through realistic examples, how Autoregressive Flows, based on affine and rational quadratic spline bijectors, are able to learn complicated high-dimensional Likelihoods arising in High Energy Physics (HEP) analyses. We focus on a toy LHC analysis example already considered in the literature and on two Effective Field Theory fits of flavor and electroweak observables, whose samples have been obtained through the HEPFit code. We discuss advantages and disadvantages of the unsupervised approach with respect to the supervised one and discuss a possible interplay between the two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SciPost Physics
SciPost Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
8.20
自引率
12.70%
发文量
315
审稿时长
10 weeks
期刊介绍: SciPost Physics publishes breakthrough research articles in the whole field of Physics, covering Experimental, Theoretical and Computational approaches. Specialties covered by this Journal: - Atomic, Molecular and Optical Physics - Experiment - Atomic, Molecular and Optical Physics - Theory - Biophysics - Condensed Matter Physics - Experiment - Condensed Matter Physics - Theory - Condensed Matter Physics - Computational - Fluid Dynamics - Gravitation, Cosmology and Astroparticle Physics - High-Energy Physics - Experiment - High-Energy Physics - Theory - High-Energy Physics - Phenomenology - Mathematical Physics - Nuclear Physics - Experiment - Nuclear Physics - Theory - Quantum Physics - Statistical and Soft Matter Physics.
期刊最新文献
Two infinite families of facets of the holographic entropy cone Higher-form symmetry and chiral transport in real-time Abelian lattice gauge theory Flux-tunable Kitaev chain in a quantum dot array General quantum-classical dynamics as measurement based feedback Riemannian optimization of photonic quantum circuits in phase and Fock space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1