{"title":"选择性激光熔融 TiC/GT D222 镍基复合材料在 900°C 下 75% Na2SO4 和 25% K2SO4 熔盐介质中的热腐蚀行为","authors":"Yuting Lv, Xing Ouyang, Yaojie Liu, Ying Tian, Rui Wang, Guijiang Wei","doi":"10.1108/acmm-06-2024-3031","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to investigate the differences in hot corrosion behavior of the GTD222 superalloy and TiC/GTD222 composite in a mixed salt of 75% Na<sub>2</sub>SO<sub>4</sub> and 25% K<sub>2</sub>SO<sub>4</sub> at 900°C.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The GTD222 superalloy and TiC/GTD222 nickel-based composite were prepared using selective laser melting (SLM). Subsequently, the hot corrosion behavior of the two alloys was systematically investigated in a salt mixture consisting of 75% Na<sub>2</sub>SO<sub>4</sub> and 25% K<sub>2</sub>SO<sub>4</sub> (Wt.%) at 900°C.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The TiC/GTD222 composite exhibited better hot corrosion resistance compared to the GTD222 superalloy. First, the addition of alloying elements led to the formation of a protective oxide film on the TiC/GTD222 composites 20 h before hot corrosion. Second, TiC/GTD222 composite corrosion surface has a higher Ti content, after 100 h of hot corrosion, the composite corrosion surface Ti content of 10.8% is more than two times the GTD222 alloy 4% Ti. The Ti and Cr oxides are tightly bonded, effectively resisting the erosion of corrosive elements.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The hot corrosion behavior of GTD222 superalloy and TiC/GTD222 composites prepared by SLM in a mixed salt of 75% Na<sub>2</sub>SO<sub>4</sub> and 25% K<sub>2</sub>SO<sub>4</sub> was studied for the first time. This study provides insights into the design of high-temperature alloys resistant to hot corrosion.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"86 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot corrosion behavior of selective laser melted TiC/GT D222 nickel-based composite in 75% Na2SO4 and 25% K2SO4 molten salt medium at 900°C\",\"authors\":\"Yuting Lv, Xing Ouyang, Yaojie Liu, Ying Tian, Rui Wang, Guijiang Wei\",\"doi\":\"10.1108/acmm-06-2024-3031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to investigate the differences in hot corrosion behavior of the GTD222 superalloy and TiC/GTD222 composite in a mixed salt of 75% Na<sub>2</sub>SO<sub>4</sub> and 25% K<sub>2</sub>SO<sub>4</sub> at 900°C.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The GTD222 superalloy and TiC/GTD222 nickel-based composite were prepared using selective laser melting (SLM). Subsequently, the hot corrosion behavior of the two alloys was systematically investigated in a salt mixture consisting of 75% Na<sub>2</sub>SO<sub>4</sub> and 25% K<sub>2</sub>SO<sub>4</sub> (Wt.%) at 900°C.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The TiC/GTD222 composite exhibited better hot corrosion resistance compared to the GTD222 superalloy. First, the addition of alloying elements led to the formation of a protective oxide film on the TiC/GTD222 composites 20 h before hot corrosion. Second, TiC/GTD222 composite corrosion surface has a higher Ti content, after 100 h of hot corrosion, the composite corrosion surface Ti content of 10.8% is more than two times the GTD222 alloy 4% Ti. The Ti and Cr oxides are tightly bonded, effectively resisting the erosion of corrosive elements.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The hot corrosion behavior of GTD222 superalloy and TiC/GTD222 composites prepared by SLM in a mixed salt of 75% Na<sub>2</sub>SO<sub>4</sub> and 25% K<sub>2</sub>SO<sub>4</sub> was studied for the first time. This study provides insights into the design of high-temperature alloys resistant to hot corrosion.</p><!--/ Abstract__block -->\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-06-2024-3031\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-06-2024-3031","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Hot corrosion behavior of selective laser melted TiC/GT D222 nickel-based composite in 75% Na2SO4 and 25% K2SO4 molten salt medium at 900°C
Purpose
This paper aims to investigate the differences in hot corrosion behavior of the GTD222 superalloy and TiC/GTD222 composite in a mixed salt of 75% Na2SO4 and 25% K2SO4 at 900°C.
Design/methodology/approach
The GTD222 superalloy and TiC/GTD222 nickel-based composite were prepared using selective laser melting (SLM). Subsequently, the hot corrosion behavior of the two alloys was systematically investigated in a salt mixture consisting of 75% Na2SO4 and 25% K2SO4 (Wt.%) at 900°C.
Findings
The TiC/GTD222 composite exhibited better hot corrosion resistance compared to the GTD222 superalloy. First, the addition of alloying elements led to the formation of a protective oxide film on the TiC/GTD222 composites 20 h before hot corrosion. Second, TiC/GTD222 composite corrosion surface has a higher Ti content, after 100 h of hot corrosion, the composite corrosion surface Ti content of 10.8% is more than two times the GTD222 alloy 4% Ti. The Ti and Cr oxides are tightly bonded, effectively resisting the erosion of corrosive elements.
Originality/value
The hot corrosion behavior of GTD222 superalloy and TiC/GTD222 composites prepared by SLM in a mixed salt of 75% Na2SO4 and 25% K2SO4 was studied for the first time. This study provides insights into the design of high-temperature alloys resistant to hot corrosion.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.