Hugan Zhang, Xianku Zhang, Shihang Gao, Daocheng Ma
{"title":"基于主动干扰抑制控制的欠驱动水面舰艇路径跟踪(考虑横向漂移","authors":"Hugan Zhang, Xianku Zhang, Shihang Gao, Daocheng Ma","doi":"10.1177/14750902241266299","DOIUrl":null,"url":null,"abstract":"To address the challenges posed by unmodeled dynamics, lateral drift, external disturbances, and the difficulty in measuring velocities in underactuated surface vessels (USVs) motion systems, an active disturbance rejection control (ADRC) with two linear extended state observers (LESO) is proposed for USV path following. Firstly, we employ the Backstepping technique to create a virtual heading angle while estimating lateral drift and unmodeled dynamics using LESO. Subsequently, the ADRC algorithm is employed to control the heading angle. Since measuring the velocities of USV is challenging, velocity observers are introduce to estimate surge and sway velocities. Finally, we utilize the MMG model with high precision to track straight-line and curved paths, respectively. Simulation results validate that our developed controller accurately follows the reference path even in the presence of disturbances, affirming the effectiveness of our proposed control strategy.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"12 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path following of underactuated surface vessels based active disturbance rejection control considering lateral drift\",\"authors\":\"Hugan Zhang, Xianku Zhang, Shihang Gao, Daocheng Ma\",\"doi\":\"10.1177/14750902241266299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenges posed by unmodeled dynamics, lateral drift, external disturbances, and the difficulty in measuring velocities in underactuated surface vessels (USVs) motion systems, an active disturbance rejection control (ADRC) with two linear extended state observers (LESO) is proposed for USV path following. Firstly, we employ the Backstepping technique to create a virtual heading angle while estimating lateral drift and unmodeled dynamics using LESO. Subsequently, the ADRC algorithm is employed to control the heading angle. Since measuring the velocities of USV is challenging, velocity observers are introduce to estimate surge and sway velocities. Finally, we utilize the MMG model with high precision to track straight-line and curved paths, respectively. Simulation results validate that our developed controller accurately follows the reference path even in the presence of disturbances, affirming the effectiveness of our proposed control strategy.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902241266299\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241266299","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Path following of underactuated surface vessels based active disturbance rejection control considering lateral drift
To address the challenges posed by unmodeled dynamics, lateral drift, external disturbances, and the difficulty in measuring velocities in underactuated surface vessels (USVs) motion systems, an active disturbance rejection control (ADRC) with two linear extended state observers (LESO) is proposed for USV path following. Firstly, we employ the Backstepping technique to create a virtual heading angle while estimating lateral drift and unmodeled dynamics using LESO. Subsequently, the ADRC algorithm is employed to control the heading angle. Since measuring the velocities of USV is challenging, velocity observers are introduce to estimate surge and sway velocities. Finally, we utilize the MMG model with high precision to track straight-line and curved paths, respectively. Simulation results validate that our developed controller accurately follows the reference path even in the presence of disturbances, affirming the effectiveness of our proposed control strategy.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.