Riccardo Asti, Selina Bonini, Giulio Viola, Gianluca Vignaroli
{"title":"协调北亚平宁山脉(意大利)的后成因断层、古应力演化和结构继承:蒙蒂-马尔塔尼断层系统的启示","authors":"Riccardo Asti, Selina Bonini, Giulio Viola, Gianluca Vignaroli","doi":"10.5194/egusphere-2024-2319","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Structural inheritance plays a significant role upon the evolution of fault systems in different tectonic settings. Both positive reactivation of pre-orogenic extensional faults and negative reactivation of syn-orogenic reverse faults during orogenic cycles have been extensively studied and documented. By contrast, only few studies have addressed the impact of structural inheritance in regions undergoing polyphase tectonic histories. Here, we present the Monti Martani Fault System (MMFS) case study (Northern Apennines, Italy) as an example of a seismically active region where it is possible to investigate the role of inherited pre-orogenic structural features upon the post-orogenic tectonic evolution. Based on new field structural data from extensional faults that controlled the Plio-Quaternary evolution of the system, we propose that the MMFS does not consist of a kilometer-long L-shaped single normal fault, as previously proposed in the literature, but is instead a set of several NW-SE trending shorter extensional faults arranged in an en-echelon style. Paleostress analysis yielded three distinct extension directions during the Plio-Quaternary post-orogenic extension, which are NE-SW, NNE-SSW and NW-SE. We relate the first two directions to local orientation fluctuations of the regional stress field interacting with moderately oblique inherited structural features, and the latter direction to a short-live orogen-parallel extensional event whose geodynamic causes remain unclear. We suggest that the NE-SW regional post-orogenic extension direction controls the strike of most of the NW-SE Apenninic-trending extensional faults, while the morphostructural trend of the Monti Martani Ridge and of its boundaries with the surrounding Plio-Quaternary Medio Tiberino and Terni basins is controlled by the strike of the ~N-S and ~E-W pre-orogenic (Jurassic) inherited structural features. We also discuss the implications of these observations upon the seismotectonics of the MMFS. Our findings suggest that, in contrast to previous suggestions, the fault system cannot be classified as an active and capable structural feature.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":"229 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconciling post-orogenic faulting, paleostress evolution and structural inheritance in the seismogenic Northern Apennines (Italy): Insights from the Monti Martani Fault System\",\"authors\":\"Riccardo Asti, Selina Bonini, Giulio Viola, Gianluca Vignaroli\",\"doi\":\"10.5194/egusphere-2024-2319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Structural inheritance plays a significant role upon the evolution of fault systems in different tectonic settings. Both positive reactivation of pre-orogenic extensional faults and negative reactivation of syn-orogenic reverse faults during orogenic cycles have been extensively studied and documented. By contrast, only few studies have addressed the impact of structural inheritance in regions undergoing polyphase tectonic histories. Here, we present the Monti Martani Fault System (MMFS) case study (Northern Apennines, Italy) as an example of a seismically active region where it is possible to investigate the role of inherited pre-orogenic structural features upon the post-orogenic tectonic evolution. Based on new field structural data from extensional faults that controlled the Plio-Quaternary evolution of the system, we propose that the MMFS does not consist of a kilometer-long L-shaped single normal fault, as previously proposed in the literature, but is instead a set of several NW-SE trending shorter extensional faults arranged in an en-echelon style. Paleostress analysis yielded three distinct extension directions during the Plio-Quaternary post-orogenic extension, which are NE-SW, NNE-SSW and NW-SE. We relate the first two directions to local orientation fluctuations of the regional stress field interacting with moderately oblique inherited structural features, and the latter direction to a short-live orogen-parallel extensional event whose geodynamic causes remain unclear. We suggest that the NE-SW regional post-orogenic extension direction controls the strike of most of the NW-SE Apenninic-trending extensional faults, while the morphostructural trend of the Monti Martani Ridge and of its boundaries with the surrounding Plio-Quaternary Medio Tiberino and Terni basins is controlled by the strike of the ~N-S and ~E-W pre-orogenic (Jurassic) inherited structural features. We also discuss the implications of these observations upon the seismotectonics of the MMFS. Our findings suggest that, in contrast to previous suggestions, the fault system cannot be classified as an active and capable structural feature.\",\"PeriodicalId\":21912,\"journal\":{\"name\":\"Solid Earth\",\"volume\":\"229 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2319\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2319","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Reconciling post-orogenic faulting, paleostress evolution and structural inheritance in the seismogenic Northern Apennines (Italy): Insights from the Monti Martani Fault System
Abstract. Structural inheritance plays a significant role upon the evolution of fault systems in different tectonic settings. Both positive reactivation of pre-orogenic extensional faults and negative reactivation of syn-orogenic reverse faults during orogenic cycles have been extensively studied and documented. By contrast, only few studies have addressed the impact of structural inheritance in regions undergoing polyphase tectonic histories. Here, we present the Monti Martani Fault System (MMFS) case study (Northern Apennines, Italy) as an example of a seismically active region where it is possible to investigate the role of inherited pre-orogenic structural features upon the post-orogenic tectonic evolution. Based on new field structural data from extensional faults that controlled the Plio-Quaternary evolution of the system, we propose that the MMFS does not consist of a kilometer-long L-shaped single normal fault, as previously proposed in the literature, but is instead a set of several NW-SE trending shorter extensional faults arranged in an en-echelon style. Paleostress analysis yielded three distinct extension directions during the Plio-Quaternary post-orogenic extension, which are NE-SW, NNE-SSW and NW-SE. We relate the first two directions to local orientation fluctuations of the regional stress field interacting with moderately oblique inherited structural features, and the latter direction to a short-live orogen-parallel extensional event whose geodynamic causes remain unclear. We suggest that the NE-SW regional post-orogenic extension direction controls the strike of most of the NW-SE Apenninic-trending extensional faults, while the morphostructural trend of the Monti Martani Ridge and of its boundaries with the surrounding Plio-Quaternary Medio Tiberino and Terni basins is controlled by the strike of the ~N-S and ~E-W pre-orogenic (Jurassic) inherited structural features. We also discuss the implications of these observations upon the seismotectonics of the MMFS. Our findings suggest that, in contrast to previous suggestions, the fault system cannot be classified as an active and capable structural feature.
期刊介绍:
Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines:
geochemistry, mineralogy, petrology, volcanology;
geodesy and gravity;
geodynamics: numerical and analogue modeling of geoprocesses;
geoelectrics and electromagnetics;
geomagnetism;
geomorphology, morphotectonics, and paleoseismology;
rock physics;
seismics and seismology;
critical zone science (Earth''s permeable near-surface layer);
stratigraphy, sedimentology, and palaeontology;
rock deformation, structural geology, and tectonics.