长期运行导致的船管金属退化

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Strength of Materials Pub Date : 2024-07-29 DOI:10.1007/s11223-024-00648-2
V. D. Makarenko, O. E. Chygyrynets, Yu. L. Vynnykov, V. I. Gots, S. Yu. Maksymov, V. V. Pipa, Yu. V. Makarenko
{"title":"长期运行导致的船管金属退化","authors":"V. D. Makarenko, O. E. Chygyrynets, Yu. L. Vynnykov, V. I. Gots, S. Yu. Maksymov, V. V. Pipa, Yu. V. Makarenko","doi":"10.1007/s11223-024-00648-2","DOIUrl":null,"url":null,"abstract":"<p>Previous studies have shown that with increasing service life of shipbuilding steels, a strong hydrogen charging of their internal near-surface layers occurs, especially if the service life exceeds 3 years or more. This is known to cause changes in the mechanical properties of steels. Therefore, there is a need to conduct additional experimental studies on the effect of hydrogen in a wide temperature range on the degradation of the structural and phase states of steels, in particular, on changes in the crystal lattice and redistribution of cementite, which directly leads to a decrease in the ductile and deformation properties of the metal, especially at subzero air temperatures. The effect of service life and subzero temperatures on the stress state of the a-matrix lattice and its parameters for the 10KhSND and D32 steels was investigated. A tendency to increase in the value of lattice distortion stresses and decrease in the mass fraction of cementite in specimens of these steels after long-term operation was revealed. Metallographic studies showed that with decrease in the temperature of the cooling medium, the volume fraction of hydrides increases significantly, which leads to embrittlement and softening of steels.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"23 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of Ship Pipe Metal Due to Long-Term Operation\",\"authors\":\"V. D. Makarenko, O. E. Chygyrynets, Yu. L. Vynnykov, V. I. Gots, S. Yu. Maksymov, V. V. Pipa, Yu. V. Makarenko\",\"doi\":\"10.1007/s11223-024-00648-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previous studies have shown that with increasing service life of shipbuilding steels, a strong hydrogen charging of their internal near-surface layers occurs, especially if the service life exceeds 3 years or more. This is known to cause changes in the mechanical properties of steels. Therefore, there is a need to conduct additional experimental studies on the effect of hydrogen in a wide temperature range on the degradation of the structural and phase states of steels, in particular, on changes in the crystal lattice and redistribution of cementite, which directly leads to a decrease in the ductile and deformation properties of the metal, especially at subzero air temperatures. The effect of service life and subzero temperatures on the stress state of the a-matrix lattice and its parameters for the 10KhSND and D32 steels was investigated. A tendency to increase in the value of lattice distortion stresses and decrease in the mass fraction of cementite in specimens of these steels after long-term operation was revealed. Metallographic studies showed that with decrease in the temperature of the cooling medium, the volume fraction of hydrides increases significantly, which leads to embrittlement and softening of steels.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-024-00648-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00648-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究表明,随着造船钢使用寿命的延长,其内部近表面层会出现强烈的氢充电现象,尤其是在使用寿命超过 3 年或更长的情况下。众所周知,这将导致钢的机械性能发生变化。因此,有必要就氢在宽温度范围内对钢的结构和相态退化的影响进行更多的实验研究,特别是对晶格变化和雪明碳钙重新分布的影响,这直接导致金属的韧性和变形性能下降,尤其是在零下气温条件下。研究了 10KhSND 和 D32 钢的使用寿命和零下温度对 a 矩阵晶格应力状态及其参数的影响。结果表明,长期使用后,这些钢材试样的晶格畸变应力值呈上升趋势,雪明碳酸盐的质量分数呈下降趋势。金相学研究表明,随着冷却介质温度的降低,氢化物的体积分数显著增加,从而导致钢的脆化和软化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Degradation of Ship Pipe Metal Due to Long-Term Operation

Previous studies have shown that with increasing service life of shipbuilding steels, a strong hydrogen charging of their internal near-surface layers occurs, especially if the service life exceeds 3 years or more. This is known to cause changes in the mechanical properties of steels. Therefore, there is a need to conduct additional experimental studies on the effect of hydrogen in a wide temperature range on the degradation of the structural and phase states of steels, in particular, on changes in the crystal lattice and redistribution of cementite, which directly leads to a decrease in the ductile and deformation properties of the metal, especially at subzero air temperatures. The effect of service life and subzero temperatures on the stress state of the a-matrix lattice and its parameters for the 10KhSND and D32 steels was investigated. A tendency to increase in the value of lattice distortion stresses and decrease in the mass fraction of cementite in specimens of these steels after long-term operation was revealed. Metallographic studies showed that with decrease in the temperature of the cooling medium, the volume fraction of hydrides increases significantly, which leads to embrittlement and softening of steels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strength of Materials
Strength of Materials MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.20
自引率
14.30%
发文量
89
审稿时长
6-12 weeks
期刊介绍: Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.
期刊最新文献
Simulation Analysis of Mechanical Properties of DC Transmission Lines Under Mountain Fire Condition Eulerian Formulation of the Constitutive Relation for an Electro-Magneto-Elastic Material Class Impact Damage Prediction of Carbon Fiber Foam Sandwich Structure Based on the Hashin Failure Criterion Simulation of Low-Temperature Localized Serrated Deformation of Structural Materials in Liquid Helium Under Different Loading Modes and Potential Energy Accumulation Effect of Structural Anisotropy on a Fracture Mode of Ferromagnetic Steels Under Cyclic Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1