{"title":"从木质素中可持续合成活性多孔碳以增强二氧化碳捕获:物理化学活化路线的比较研究","authors":"Himanshu Patel, Amar Mohanty and Manjusri Misra","doi":"10.1039/D4YA00305E","DOIUrl":null,"url":null,"abstract":"<p >A sustainable and readily available material, lignin protobind 2400, was upcycled to activated porous carbon (APC) compatible with post-combustion CO<small><sub>2</sub></small> capture. The effectiveness of the novel two-step physicochemical activation using KOH + CO<small><sub>2</sub></small> and ZnCl<small><sub>2</sub></small> + CO<small><sub>2</sub></small> was compared with that of the respective physical (only CO<small><sub>2</sub></small>) and chemical activation (only KOH or ZnCl<small><sub>2</sub></small>). The effect of carbonization conditions (N<small><sub>2</sub></small> or CO<small><sub>2</sub></small> purging) on the resulting APC properties and CO<small><sub>2</sub></small> adsorption performance was studied. The maximum BET surface area of 1480 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> and the best CO<small><sub>2</sub></small> adsorption capacity of 5.68, 3.66, and 2.67 mmol g<small><sup>−1</sup></small> were observed at 0, 25, and 40 °C/1 bar, respectively. From the precursor to the final product, the APC yield falls within the range of 14.5–40.8 wt%. The APC derived from lignin exhibited better CO<small><sub>2</sub></small>/N<small><sub>2</sub></small> selectivity. The isosteric heat of adsorption for all the APCs remained below 40 kJ mol<small><sup>−1</sup></small>, which suggested a lower energy requirement during the regeneration. The excellent reusability with fluctuations of only 0.51% in the amount of CO<small><sub>2</sub></small> adsorbed over ten consecutive adsorption/desorption cycles highlights the APC's outstanding recyclability.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00305e?page=search","citationCount":"0","resultStr":"{\"title\":\"Sustainable synthesis of activated porous carbon from lignin for enhanced CO2 capture: a comparative study of physicochemical activation routes†\",\"authors\":\"Himanshu Patel, Amar Mohanty and Manjusri Misra\",\"doi\":\"10.1039/D4YA00305E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A sustainable and readily available material, lignin protobind 2400, was upcycled to activated porous carbon (APC) compatible with post-combustion CO<small><sub>2</sub></small> capture. The effectiveness of the novel two-step physicochemical activation using KOH + CO<small><sub>2</sub></small> and ZnCl<small><sub>2</sub></small> + CO<small><sub>2</sub></small> was compared with that of the respective physical (only CO<small><sub>2</sub></small>) and chemical activation (only KOH or ZnCl<small><sub>2</sub></small>). The effect of carbonization conditions (N<small><sub>2</sub></small> or CO<small><sub>2</sub></small> purging) on the resulting APC properties and CO<small><sub>2</sub></small> adsorption performance was studied. The maximum BET surface area of 1480 m<small><sup>2</sup></small> g<small><sup>−1</sup></small> and the best CO<small><sub>2</sub></small> adsorption capacity of 5.68, 3.66, and 2.67 mmol g<small><sup>−1</sup></small> were observed at 0, 25, and 40 °C/1 bar, respectively. From the precursor to the final product, the APC yield falls within the range of 14.5–40.8 wt%. The APC derived from lignin exhibited better CO<small><sub>2</sub></small>/N<small><sub>2</sub></small> selectivity. The isosteric heat of adsorption for all the APCs remained below 40 kJ mol<small><sup>−1</sup></small>, which suggested a lower energy requirement during the regeneration. The excellent reusability with fluctuations of only 0.51% in the amount of CO<small><sub>2</sub></small> adsorbed over ten consecutive adsorption/desorption cycles highlights the APC's outstanding recyclability.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00305e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00305e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00305e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
一种可持续且易于获得的材料--木质素原粘合剂 2400 被升级改造为可用于燃烧后二氧化碳捕集的活性多孔碳 (APC)。比较了使用 KOH + CO2 和 ZnCl2 + CO2 的新型两步物理化学活化与各自的物理(仅 CO2)和化学(仅 KOH 或 ZnCl2)活化的效果。研究了碳化条件(N2 或 CO2 吹扫)对所得 APC 特性和 CO2 吸附性能的影响。在 0、25 和 40 C/1 bar 条件下,观察到最大 BET 表面积为 1480 m2/g,最佳二氧化碳吸附容量分别为 5.68、3.66 和 2.67 mmol/g。从前驱体到最终产品,APC 的产量在 14.5-40.8 wt.% 之间。从木质素中提取的 APC 具有更好的 CO2/N2 选择性。所有 APC 的等效吸附热均低于 40 kJ/mol,这表明再生过程中的能量需求较低。在连续十次吸附/解吸循环中,二氧化碳吸附量的波动仅为 0.51%,出色的可再利用性凸显了 APC 的出色可回收性。
Sustainable synthesis of activated porous carbon from lignin for enhanced CO2 capture: a comparative study of physicochemical activation routes†
A sustainable and readily available material, lignin protobind 2400, was upcycled to activated porous carbon (APC) compatible with post-combustion CO2 capture. The effectiveness of the novel two-step physicochemical activation using KOH + CO2 and ZnCl2 + CO2 was compared with that of the respective physical (only CO2) and chemical activation (only KOH or ZnCl2). The effect of carbonization conditions (N2 or CO2 purging) on the resulting APC properties and CO2 adsorption performance was studied. The maximum BET surface area of 1480 m2 g−1 and the best CO2 adsorption capacity of 5.68, 3.66, and 2.67 mmol g−1 were observed at 0, 25, and 40 °C/1 bar, respectively. From the precursor to the final product, the APC yield falls within the range of 14.5–40.8 wt%. The APC derived from lignin exhibited better CO2/N2 selectivity. The isosteric heat of adsorption for all the APCs remained below 40 kJ mol−1, which suggested a lower energy requirement during the regeneration. The excellent reusability with fluctuations of only 0.51% in the amount of CO2 adsorbed over ten consecutive adsorption/desorption cycles highlights the APC's outstanding recyclability.