{"title":"极化率各向异性介质中诱导极化的三维建模研究","authors":"Jiaxuan Ling, Wei Deng, Shiwei Wei, Qingrui Chen, Lihua He, Siqin Liu, Mengmeng Li","doi":"10.1111/1365-2478.13580","DOIUrl":null,"url":null,"abstract":"<p>To enhance the 3D numerical simulation of the induced polarization method within anisotropic media, our study employs the 2D Fourier transform technique. This technique is utilized to convert the 3D integral of the abnormal potential from the space domain into a 1D integral in the wave number domain. Subsequently, we apply the shape function integration method, which is founded on quadratic interpolation, to resolve the 1D integral equation effectively. This methodology significantly decreases the necessary computational resources and storage while simultaneously harnessing the high efficiency and accuracy of the 1D shape function integration method, as well as the high efficiency of the fast Fourier transform, optimizing the numerical simulation process of the induced polarization method. We validate the accuracy of our algorithmic approach using an equivalent uniform layered model. Furthermore, by employing the sphere model, we conduct a comparison of computation time with the finite element method, thereby demonstrating high efficiency of the proposed algorithm. Utilizing the OpenMP parallel algorithm, we confirm that the proposed algorithm has a high degree of parallelism. We also analyse the differences in the equivalent apparent resistivity and apparent polarizability for various electrical parameters, using a prismatic model as the basis for our analysis. Our results clearly indicate that the anisotropy of the polarizability exerts substantial influence on the observe data. Consequently, the implications of polarizability anisotropy are deemed critical and not be disregarded in the field detection applications.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on 3D modelling of induced polarization in polarizability anisotropic media\",\"authors\":\"Jiaxuan Ling, Wei Deng, Shiwei Wei, Qingrui Chen, Lihua He, Siqin Liu, Mengmeng Li\",\"doi\":\"10.1111/1365-2478.13580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To enhance the 3D numerical simulation of the induced polarization method within anisotropic media, our study employs the 2D Fourier transform technique. This technique is utilized to convert the 3D integral of the abnormal potential from the space domain into a 1D integral in the wave number domain. Subsequently, we apply the shape function integration method, which is founded on quadratic interpolation, to resolve the 1D integral equation effectively. This methodology significantly decreases the necessary computational resources and storage while simultaneously harnessing the high efficiency and accuracy of the 1D shape function integration method, as well as the high efficiency of the fast Fourier transform, optimizing the numerical simulation process of the induced polarization method. We validate the accuracy of our algorithmic approach using an equivalent uniform layered model. Furthermore, by employing the sphere model, we conduct a comparison of computation time with the finite element method, thereby demonstrating high efficiency of the proposed algorithm. Utilizing the OpenMP parallel algorithm, we confirm that the proposed algorithm has a high degree of parallelism. We also analyse the differences in the equivalent apparent resistivity and apparent polarizability for various electrical parameters, using a prismatic model as the basis for our analysis. Our results clearly indicate that the anisotropy of the polarizability exerts substantial influence on the observe data. Consequently, the implications of polarizability anisotropy are deemed critical and not be disregarded in the field detection applications.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13580\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13580","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Research on 3D modelling of induced polarization in polarizability anisotropic media
To enhance the 3D numerical simulation of the induced polarization method within anisotropic media, our study employs the 2D Fourier transform technique. This technique is utilized to convert the 3D integral of the abnormal potential from the space domain into a 1D integral in the wave number domain. Subsequently, we apply the shape function integration method, which is founded on quadratic interpolation, to resolve the 1D integral equation effectively. This methodology significantly decreases the necessary computational resources and storage while simultaneously harnessing the high efficiency and accuracy of the 1D shape function integration method, as well as the high efficiency of the fast Fourier transform, optimizing the numerical simulation process of the induced polarization method. We validate the accuracy of our algorithmic approach using an equivalent uniform layered model. Furthermore, by employing the sphere model, we conduct a comparison of computation time with the finite element method, thereby demonstrating high efficiency of the proposed algorithm. Utilizing the OpenMP parallel algorithm, we confirm that the proposed algorithm has a high degree of parallelism. We also analyse the differences in the equivalent apparent resistivity and apparent polarizability for various electrical parameters, using a prismatic model as the basis for our analysis. Our results clearly indicate that the anisotropy of the polarizability exerts substantial influence on the observe data. Consequently, the implications of polarizability anisotropy are deemed critical and not be disregarded in the field detection applications.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.