矩形脉冲载荷下 FG-GPLRC 拱体的动态屈曲研究

IF 1.7 4区 工程技术 Q3 ENGINEERING, CIVIL Iranian Journal of Science and Technology, Transactions of Civil Engineering Pub Date : 2024-07-31 DOI:10.1007/s40996-024-01567-7
Qian Hu, Yonghui Huang, Xinling Li, Bijing Chen
{"title":"矩形脉冲载荷下 FG-GPLRC 拱体的动态屈曲研究","authors":"Qian Hu, Yonghui Huang, Xinling Li, Bijing Chen","doi":"10.1007/s40996-024-01567-7","DOIUrl":null,"url":null,"abstract":"<p>The dynamic mechanical response of functional gradient graphene nanoplatelets reinforced composite arches (GPLs) under the influence of rectangular pulse loading has been studied by employing finite element analysis (FEA). By comparing the static buckling behavior of arches with the peak of the dynamic displacement response, a new method to determine the critical dynamic buckling load and load holding time was established. The specific effects of the distribution pattern, shape and size, mass fraction, and load holding time of GPLs on the dynamic response performance of arches were deeply investigated through a parametric study. It is found that even a small amount of GPLs addition can significantly elevate the dynamic buckling load carrying capacity of arches, and the X-shaped GPLs distribution pattern is the most effective way to enhance the dynamic stability performance of arches. With other parameters being constant, a larger surface area and thinner GPL can improve the performance of the material more significantly.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of Dynamic Buckling of FG-GPLRC Arch Under Rectangular Pulse Loading\",\"authors\":\"Qian Hu, Yonghui Huang, Xinling Li, Bijing Chen\",\"doi\":\"10.1007/s40996-024-01567-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dynamic mechanical response of functional gradient graphene nanoplatelets reinforced composite arches (GPLs) under the influence of rectangular pulse loading has been studied by employing finite element analysis (FEA). By comparing the static buckling behavior of arches with the peak of the dynamic displacement response, a new method to determine the critical dynamic buckling load and load holding time was established. The specific effects of the distribution pattern, shape and size, mass fraction, and load holding time of GPLs on the dynamic response performance of arches were deeply investigated through a parametric study. It is found that even a small amount of GPLs addition can significantly elevate the dynamic buckling load carrying capacity of arches, and the X-shaped GPLs distribution pattern is the most effective way to enhance the dynamic stability performance of arches. With other parameters being constant, a larger surface area and thinner GPL can improve the performance of the material more significantly.</p>\",\"PeriodicalId\":14550,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40996-024-01567-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01567-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

通过采用有限元分析(FEA),研究了功能梯度石墨烯纳米片增强复合材料拱(GPL)在矩形脉冲载荷影响下的动态力学响应。通过比较拱的静态屈曲行为和动态位移响应峰值,建立了一种确定临界动态屈曲载荷和载荷保持时间的新方法。通过参数研究,深入探讨了 GPL 的分布模式、形状和尺寸、质量分数和荷载保持时间对拱桥动态响应性能的具体影响。研究发现,即使添加少量的 GPLs 也能显著提高拱桥的动屈曲承载能力,而 X 形 GPLs 分布模式是提高拱桥动态稳定性能的最有效方法。在其他参数不变的情况下,更大的表面积和更薄的 GPL 可以更明显地改善材料的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research of Dynamic Buckling of FG-GPLRC Arch Under Rectangular Pulse Loading

The dynamic mechanical response of functional gradient graphene nanoplatelets reinforced composite arches (GPLs) under the influence of rectangular pulse loading has been studied by employing finite element analysis (FEA). By comparing the static buckling behavior of arches with the peak of the dynamic displacement response, a new method to determine the critical dynamic buckling load and load holding time was established. The specific effects of the distribution pattern, shape and size, mass fraction, and load holding time of GPLs on the dynamic response performance of arches were deeply investigated through a parametric study. It is found that even a small amount of GPLs addition can significantly elevate the dynamic buckling load carrying capacity of arches, and the X-shaped GPLs distribution pattern is the most effective way to enhance the dynamic stability performance of arches. With other parameters being constant, a larger surface area and thinner GPL can improve the performance of the material more significantly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
11.80%
发文量
203
期刊介绍: The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following: -Structural engineering- Earthquake engineering- Concrete engineering- Construction management- Steel structures- Engineering mechanics- Water resources engineering- Hydraulic engineering- Hydraulic structures- Environmental engineering- Soil mechanics- Foundation engineering- Geotechnical engineering- Transportation engineering- Surveying and geomatics.
期刊最新文献
Coupled Rainfall-Runoff and Hydrodynamic Modeling using MIKE + for Flood Simulation Mechanical and Microstructural Characteristics of Fly Ash-Nano-Silica Composites Enhancement of the Mechanical Characteristics of a Green Mortar Under Extreme Conditions: Experimental Study and Optimization Analysis A Case Study on the Effect of Multiple Earthquakes on Mid-rise RC Buildings with Mass and Stiffness Irregularity in Height Incremental Plastic Analysis of Confined Concrete Considering the Variation of Elastic Moduli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1