非因果自回归的预测性能和单位根预检验的重要性

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-07-31 DOI:10.1002/for.3172
Frédérique Bec, Heino Bohn Nielsen
{"title":"非因果自回归的预测性能和单位根预检验的重要性","authors":"Frédérique Bec,&nbsp;Heino Bohn Nielsen","doi":"10.1002/for.3172","DOIUrl":null,"url":null,"abstract":"<p>Based on a large simulation study, this paper investigates which strategy to adopt in order to choose the most accurate forecasting model for mixed causal-noncausal autoregressions (MAR) data generating processes: always differencing (D), never differencing (L), or unit root pretesting (P). Relying on recent econometric developments regarding forecasting and unit root testing in the MAR framework, the main results suggest that from a practitioner's point of view, the P strategy at the 10% level is a good compromise. In fact, it never departs too much from the best model in terms of forecast accuracy, unlike the L (respectively, D) strategy when the DGP becomes very persistent (respectively, less persistent). This approach is illustrated using recent monthly Brent crude oil price data.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 8","pages":"3072-3088"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3172","citationCount":"0","resultStr":"{\"title\":\"Forecast performance of noncausal autoregressions and the importance of unit root pretesting\",\"authors\":\"Frédérique Bec,&nbsp;Heino Bohn Nielsen\",\"doi\":\"10.1002/for.3172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on a large simulation study, this paper investigates which strategy to adopt in order to choose the most accurate forecasting model for mixed causal-noncausal autoregressions (MAR) data generating processes: always differencing (D), never differencing (L), or unit root pretesting (P). Relying on recent econometric developments regarding forecasting and unit root testing in the MAR framework, the main results suggest that from a practitioner's point of view, the P strategy at the 10% level is a good compromise. In fact, it never departs too much from the best model in terms of forecast accuracy, unlike the L (respectively, D) strategy when the DGP becomes very persistent (respectively, less persistent). This approach is illustrated using recent monthly Brent crude oil price data.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"43 8\",\"pages\":\"3072-3088\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.3172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3172\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3172","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于一项大型模拟研究,探讨了在因果-非因果混合自回归(MAR)数据生成过程中,应采用哪种策略来选择最准确的预测模型:始终差分(D)、从不差分(L)或单位根预测(P)。根据 MAR 框架中有关预测和单位根检验的最新计量经济学发展,主要结果表明,从实践者的角度来看,10% 水平的 P 策略是一个很好的折衷方案。事实上,就预测准确性而言,它从未偏离最佳模型太多,不像 L(分别为 D)策略那样在 DGP 变得非常持久(分别为较不持久)时那样。我们用最近的布伦特原油月度价格数据来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecast performance of noncausal autoregressions and the importance of unit root pretesting

Based on a large simulation study, this paper investigates which strategy to adopt in order to choose the most accurate forecasting model for mixed causal-noncausal autoregressions (MAR) data generating processes: always differencing (D), never differencing (L), or unit root pretesting (P). Relying on recent econometric developments regarding forecasting and unit root testing in the MAR framework, the main results suggest that from a practitioner's point of view, the P strategy at the 10% level is a good compromise. In fact, it never departs too much from the best model in terms of forecast accuracy, unlike the L (respectively, D) strategy when the DGP becomes very persistent (respectively, less persistent). This approach is illustrated using recent monthly Brent crude oil price data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1