大气折射引起的侧移研究:替代分析方法和新结果

L. Dettwiller
{"title":"大气折射引起的侧移研究:替代分析方法和新结果","authors":"L. Dettwiller","doi":"10.1364/josaa.522962","DOIUrl":null,"url":null,"abstract":"Atmospheric refraction modifies the apparent position of objects in the sky, and also produces a progressive lateral shift of the light rays received from these objects; in the case of a spherically symmetric atmosphere, for the first time, this shift has been numerically studied in 2022, and different analytical estimators have been compared (by Labriji <jats:italic toggle=\"yes\">et al.</jats:italic>) for the total shift. This topic is important for the reconstruction of meteor trajectories, for the analysis of wavefront sensing in adaptative optics, etc. Always in the case of a spherically symmetric atmosphere, we show two other analytical methods to study this lateral shift, and to be able to estimate it analytically in the difficult case when the celestial object is seen near the astronomical horizon. One of these methods allows us to deduce an estimator, not only of the total shift, but also of the shift of any point of the ray. We compare properties of the total lateral shift and of the refraction angle, and also the chromatism of the total lateral shift to the chromatism of the air refractivity, for rays coming from an object seen either high enough above the astronomical horizon, or on it. In this latter case, our first method shows departures from proportionality between the chromatisms of the air refractivity, of the astronomical refraction angle, and, even more, of the total lateral shift.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the lateral shift due to atmospheric refraction: alternative analytical methods, and new results\",\"authors\":\"L. Dettwiller\",\"doi\":\"10.1364/josaa.522962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric refraction modifies the apparent position of objects in the sky, and also produces a progressive lateral shift of the light rays received from these objects; in the case of a spherically symmetric atmosphere, for the first time, this shift has been numerically studied in 2022, and different analytical estimators have been compared (by Labriji <jats:italic toggle=\\\"yes\\\">et al.</jats:italic>) for the total shift. This topic is important for the reconstruction of meteor trajectories, for the analysis of wavefront sensing in adaptative optics, etc. Always in the case of a spherically symmetric atmosphere, we show two other analytical methods to study this lateral shift, and to be able to estimate it analytically in the difficult case when the celestial object is seen near the astronomical horizon. One of these methods allows us to deduce an estimator, not only of the total shift, but also of the shift of any point of the ray. We compare properties of the total lateral shift and of the refraction angle, and also the chromatism of the total lateral shift to the chromatism of the air refractivity, for rays coming from an object seen either high enough above the astronomical horizon, or on it. In this latter case, our first method shows departures from proportionality between the chromatisms of the air refractivity, of the astronomical refraction angle, and, even more, of the total lateral shift.\",\"PeriodicalId\":501620,\"journal\":{\"name\":\"Journal of the Optical Society of America A\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josaa.522962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.522962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大气折射会改变天空中物体的视位置,也会使这些物体接收到的光线产生逐渐的横向偏移;在球面对称的大气中,2022 年首次对这种偏移进行了数值研究,并对总偏移的不同分析估计值进行了比较(由 Labriji 等人)。这一课题对于流星轨迹的重建、自适应光学中的波前传感分析等都很重要。在球面对称大气的情况下,我们展示了另外两种分析方法来研究这种侧移,并能在天体靠近天文地平线的困难情况下对其进行分析估计。其中一种方法不仅能推导出总侧移的估计值,还能推导出射线任意一点侧移的估计值。我们将比较总侧移和折射角的特性,以及总侧移的色度与空气折射率的色度。在后一种情况下,我们的第一种方法显示出空气折射率的色度、天文折射角的色度以及总侧移的色度之间不成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the lateral shift due to atmospheric refraction: alternative analytical methods, and new results
Atmospheric refraction modifies the apparent position of objects in the sky, and also produces a progressive lateral shift of the light rays received from these objects; in the case of a spherically symmetric atmosphere, for the first time, this shift has been numerically studied in 2022, and different analytical estimators have been compared (by Labriji et al.) for the total shift. This topic is important for the reconstruction of meteor trajectories, for the analysis of wavefront sensing in adaptative optics, etc. Always in the case of a spherically symmetric atmosphere, we show two other analytical methods to study this lateral shift, and to be able to estimate it analytically in the difficult case when the celestial object is seen near the astronomical horizon. One of these methods allows us to deduce an estimator, not only of the total shift, but also of the shift of any point of the ray. We compare properties of the total lateral shift and of the refraction angle, and also the chromatism of the total lateral shift to the chromatism of the air refractivity, for rays coming from an object seen either high enough above the astronomical horizon, or on it. In this latter case, our first method shows departures from proportionality between the chromatisms of the air refractivity, of the astronomical refraction angle, and, even more, of the total lateral shift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moiré effect in combined planar and curved objects Multimodal segmentation of dynamic subcellular features using quantitative phase imaging and FRET-based sensors [Invited] Generation of polarization and coherence non-separable states in twisted partially coherent vector light Structural information awareness-based regularization model for infrared image stripe noise removal On simulating light diffraction by layered structures with multiple wedges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1