TMA-Grid:用于 FAIR 组织微阵列去阵列的开源、零足迹网络应用程序

Aaron Ge, Monjoy Saha, Maire A. Duggan, Petra Lenz, Mustapha Abubakar, Montserrat García-Closas, Jeya Balasubramanian, Jonas S. Almeida, Praphulla MS Bhawsar
{"title":"TMA-Grid:用于 FAIR 组织微阵列去阵列的开源、零足迹网络应用程序","authors":"Aaron Ge, Monjoy Saha, Maire A. Duggan, Petra Lenz, Mustapha Abubakar, Montserrat García-Closas, Jeya Balasubramanian, Jonas S. Almeida, Praphulla MS Bhawsar","doi":"arxiv-2407.21233","DOIUrl":null,"url":null,"abstract":"Background: Tissue Microarrays (TMAs) significantly increase analytical efficiency in\nhistopathology and large-scale epidemiologic studies by allowing multiple\ntissue cores to be scanned on a single slide. The individual cores can be\ndigitally extracted and then linked to metadata for analysis in a process known\nas de-arraying. However, TMAs often contain core misalignments and artifacts\ndue to assembly errors, which can adversely affect the reliability of the\nextracted cores during the de-arraying process. Moreover, conventional\napproaches for TMA de-arraying rely on desktop solutions.Therefore, a robust\nyet flexible de-arraying method is crucial to account for these inaccuracies\nand ensure effective downstream analyses. Results: We developed TMA-Grid, an in-browser, zero-footprint, interactive web\napplication for TMA de-arraying. This web application integrates a\nconvolutional neural network for precise tissue segmentation and a grid\nestimation algorithm to match each identified core to its expected location.\nThe application emphasizes interactivity, allowing users to easily adjust\nsegmentation and gridding results. Operating entirely in the web-browser,\nTMA-Grid eliminates the need for downloads or installations and ensures data\nprivacy. Adhering to FAIR principles (Findable, Accessible, Interoperable, and\nReusable), the application and its components are designed for seamless\nintegration into TMA research workflows. Conclusions: TMA-Grid provides a robust, user-friendly solution for TMA dearraying on the\nweb. As an open, freely accessible platform, it lays the foundation for\ncollaborative analyses of TMAs and similar histopathology imaging data.\nAvailability: Web application: https://episphere.github.io/tma-grid Code:\nhttps://github.com/episphere/tma-grid Tutorial: https://youtu.be/miajqyw4BVk","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"213 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TMA-Grid: An open-source, zero-footprint web application for FAIR Tissue MicroArray De-arraying\",\"authors\":\"Aaron Ge, Monjoy Saha, Maire A. Duggan, Petra Lenz, Mustapha Abubakar, Montserrat García-Closas, Jeya Balasubramanian, Jonas S. Almeida, Praphulla MS Bhawsar\",\"doi\":\"arxiv-2407.21233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Tissue Microarrays (TMAs) significantly increase analytical efficiency in\\nhistopathology and large-scale epidemiologic studies by allowing multiple\\ntissue cores to be scanned on a single slide. The individual cores can be\\ndigitally extracted and then linked to metadata for analysis in a process known\\nas de-arraying. However, TMAs often contain core misalignments and artifacts\\ndue to assembly errors, which can adversely affect the reliability of the\\nextracted cores during the de-arraying process. Moreover, conventional\\napproaches for TMA de-arraying rely on desktop solutions.Therefore, a robust\\nyet flexible de-arraying method is crucial to account for these inaccuracies\\nand ensure effective downstream analyses. Results: We developed TMA-Grid, an in-browser, zero-footprint, interactive web\\napplication for TMA de-arraying. This web application integrates a\\nconvolutional neural network for precise tissue segmentation and a grid\\nestimation algorithm to match each identified core to its expected location.\\nThe application emphasizes interactivity, allowing users to easily adjust\\nsegmentation and gridding results. Operating entirely in the web-browser,\\nTMA-Grid eliminates the need for downloads or installations and ensures data\\nprivacy. Adhering to FAIR principles (Findable, Accessible, Interoperable, and\\nReusable), the application and its components are designed for seamless\\nintegration into TMA research workflows. Conclusions: TMA-Grid provides a robust, user-friendly solution for TMA dearraying on the\\nweb. As an open, freely accessible platform, it lays the foundation for\\ncollaborative analyses of TMAs and similar histopathology imaging data.\\nAvailability: Web application: https://episphere.github.io/tma-grid Code:\\nhttps://github.com/episphere/tma-grid Tutorial: https://youtu.be/miajqyw4BVk\",\"PeriodicalId\":501572,\"journal\":{\"name\":\"arXiv - QuanBio - Tissues and Organs\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Tissues and Organs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:组织芯片(TMA)可以在一张载玻片上扫描多个组织核,从而大大提高了病理学和大规模流行病学研究的分析效率。在去阵列过程中,可以对单个组织核心进行连续提取,然后与元数据链接进行分析。然而,TMA 经常包含由于装配错误造成的核心错位和伪影,这会对去阵列过程中提取核心的可靠性产生不利影响。此外,传统的 TMA 去阵列方法依赖于桌面解决方案。因此,一种稳健而灵活的去阵列方法对于考虑这些误差并确保有效的下游分析至关重要。结果:我们开发了 TMA-Grid,这是一种用于 TMA 去阵列的浏览器内、零足迹、交互式网络应用程序。该网络应用程序集成了一个用于精确组织分割的卷积神经网络和一个网格估算算法,用于将每个已识别的核心与预期位置相匹配。该应用程序强调交互性,允许用户轻松调整分割和网格结果。TMA-Grid 完全在网页浏览器中运行,无需下载或安装,确保了数据的私密性。遵循 FAIR 原则(可查找、可访问、可互操作、可重用),该应用程序及其组件旨在无缝集成到 TMA 研究工作流程中。结论TMA-Grid 为在网络上进行 TMA 采集提供了一个强大、用户友好的解决方案。作为一个开放、可免费访问的平台,它为 TMA 和类似组织病理学成像数据的协作分析奠定了基础:网络应用:https://episphere.github.io/tma-grid 代码:https://github.com/episphere/tma-grid 教程:https://youtu.be/miajqyw4BVk
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TMA-Grid: An open-source, zero-footprint web application for FAIR Tissue MicroArray De-arraying
Background: Tissue Microarrays (TMAs) significantly increase analytical efficiency in histopathology and large-scale epidemiologic studies by allowing multiple tissue cores to be scanned on a single slide. The individual cores can be digitally extracted and then linked to metadata for analysis in a process known as de-arraying. However, TMAs often contain core misalignments and artifacts due to assembly errors, which can adversely affect the reliability of the extracted cores during the de-arraying process. Moreover, conventional approaches for TMA de-arraying rely on desktop solutions.Therefore, a robust yet flexible de-arraying method is crucial to account for these inaccuracies and ensure effective downstream analyses. Results: We developed TMA-Grid, an in-browser, zero-footprint, interactive web application for TMA de-arraying. This web application integrates a convolutional neural network for precise tissue segmentation and a grid estimation algorithm to match each identified core to its expected location. The application emphasizes interactivity, allowing users to easily adjust segmentation and gridding results. Operating entirely in the web-browser, TMA-Grid eliminates the need for downloads or installations and ensures data privacy. Adhering to FAIR principles (Findable, Accessible, Interoperable, and Reusable), the application and its components are designed for seamless integration into TMA research workflows. Conclusions: TMA-Grid provides a robust, user-friendly solution for TMA dearraying on the web. As an open, freely accessible platform, it lays the foundation for collaborative analyses of TMAs and similar histopathology imaging data. Availability: Web application: https://episphere.github.io/tma-grid Code: https://github.com/episphere/tma-grid Tutorial: https://youtu.be/miajqyw4BVk
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1