{"title":"基于多策略协作的建筑空间光环境优化 - 手工绘图教室案例研究","authors":"Xiaohui Du, Sijia Zhao, Shijing Hu, Siyu Song","doi":"10.1177/1420326x241268041","DOIUrl":null,"url":null,"abstract":"From the perspective of dynamic lighting throughout the year, reflector and louvre are proposed to add to the south-facing window. The optimal parameter is 2.0 m height and 1.0 m width reflector and a louvre angle of 75°. However, when further analysing the indoor illumination and uniformity, the classroom still had high or low illumination during certain periods solely relying on natural lighting, indicating that a single strategy alone cannot meet the overall lighting environment comfort needs of the space. The study suggests that different lighting environments should be used in different seasons, periods and areas of the classroom. The proportion of natural light, combined light and artificial light environments should be 30%, 45% and 25%, respectively. At the same time, considering the transformation and optimisation of the lamps, the improvement measures for windows facing other directions in the classroom is recommended, the lamps be symmetrically distributed in the horizontal direction, with a hanging height of 1.9 m in the vertical direction, which is 0.4 m higher than the original. The lighting power is 34 W and 26 W, and corresponding optimisation strategies for the intelligent control system are proposed.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"77 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of light environment in architectural space based on multi strategy collaboration – A case study of a manual drawing classroom\",\"authors\":\"Xiaohui Du, Sijia Zhao, Shijing Hu, Siyu Song\",\"doi\":\"10.1177/1420326x241268041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the perspective of dynamic lighting throughout the year, reflector and louvre are proposed to add to the south-facing window. The optimal parameter is 2.0 m height and 1.0 m width reflector and a louvre angle of 75°. However, when further analysing the indoor illumination and uniformity, the classroom still had high or low illumination during certain periods solely relying on natural lighting, indicating that a single strategy alone cannot meet the overall lighting environment comfort needs of the space. The study suggests that different lighting environments should be used in different seasons, periods and areas of the classroom. The proportion of natural light, combined light and artificial light environments should be 30%, 45% and 25%, respectively. At the same time, considering the transformation and optimisation of the lamps, the improvement measures for windows facing other directions in the classroom is recommended, the lamps be symmetrically distributed in the horizontal direction, with a hanging height of 1.9 m in the vertical direction, which is 0.4 m higher than the original. The lighting power is 34 W and 26 W, and corresponding optimisation strategies for the intelligent control system are proposed.\",\"PeriodicalId\":13578,\"journal\":{\"name\":\"Indoor and Built Environment\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor and Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1420326x241268041\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241268041","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Optimisation of light environment in architectural space based on multi strategy collaboration – A case study of a manual drawing classroom
From the perspective of dynamic lighting throughout the year, reflector and louvre are proposed to add to the south-facing window. The optimal parameter is 2.0 m height and 1.0 m width reflector and a louvre angle of 75°. However, when further analysing the indoor illumination and uniformity, the classroom still had high or low illumination during certain periods solely relying on natural lighting, indicating that a single strategy alone cannot meet the overall lighting environment comfort needs of the space. The study suggests that different lighting environments should be used in different seasons, periods and areas of the classroom. The proportion of natural light, combined light and artificial light environments should be 30%, 45% and 25%, respectively. At the same time, considering the transformation and optimisation of the lamps, the improvement measures for windows facing other directions in the classroom is recommended, the lamps be symmetrically distributed in the horizontal direction, with a hanging height of 1.9 m in the vertical direction, which is 0.4 m higher than the original. The lighting power is 34 W and 26 W, and corresponding optimisation strategies for the intelligent control system are proposed.
期刊介绍:
Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).