{"title":"突触可塑性:从多层神经网络中的嵌合状态到同步振荡","authors":"Peihua Feng, Luoqi Ye","doi":"10.1007/s11571-024-10158-1","DOIUrl":null,"url":null,"abstract":"<p>This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections. The study categorizes the layers into three distinct parts: the initial layers (1–4) demonstrate the emergence of non-uniformity in the random firing of neurons; the middle layers (5–7) exhibit an amplification of this non-uniformity, forming a higher degree of synchronization; and the final layers (8–10) display a completely synchronized process. The introduction of synaptic plasticity disrupts this synchrony, inducing periodic oscillation characteristics across layers. The specificity of these oscillations is notably accentuated with increasing network depth. These insights shed light on the interplay between neural network complexity and synaptic plasticity in influencing synchronization dynamics, presenting avenues for enhanced neural network architectures and refined neuroscientific models. The findings underscore the imperative to delve deeper into the implications of synaptic plasticity on the structure and function of intricate multi-layer neural networks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"151 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synaptic plasticity: from chimera states to synchronicity oscillations in multilayer neural networks\",\"authors\":\"Peihua Feng, Luoqi Ye\",\"doi\":\"10.1007/s11571-024-10158-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections. The study categorizes the layers into three distinct parts: the initial layers (1–4) demonstrate the emergence of non-uniformity in the random firing of neurons; the middle layers (5–7) exhibit an amplification of this non-uniformity, forming a higher degree of synchronization; and the final layers (8–10) display a completely synchronized process. The introduction of synaptic plasticity disrupts this synchrony, inducing periodic oscillation characteristics across layers. The specificity of these oscillations is notably accentuated with increasing network depth. These insights shed light on the interplay between neural network complexity and synaptic plasticity in influencing synchronization dynamics, presenting avenues for enhanced neural network architectures and refined neuroscientific models. The findings underscore the imperative to delve deeper into the implications of synaptic plasticity on the structure and function of intricate multi-layer neural networks.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"151 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10158-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10158-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Synaptic plasticity: from chimera states to synchronicity oscillations in multilayer neural networks
This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections. The study categorizes the layers into three distinct parts: the initial layers (1–4) demonstrate the emergence of non-uniformity in the random firing of neurons; the middle layers (5–7) exhibit an amplification of this non-uniformity, forming a higher degree of synchronization; and the final layers (8–10) display a completely synchronized process. The introduction of synaptic plasticity disrupts this synchrony, inducing periodic oscillation characteristics across layers. The specificity of these oscillations is notably accentuated with increasing network depth. These insights shed light on the interplay between neural network complexity and synaptic plasticity in influencing synchronization dynamics, presenting avenues for enhanced neural network architectures and refined neuroscientific models. The findings underscore the imperative to delve deeper into the implications of synaptic plasticity on the structure and function of intricate multi-layer neural networks.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.