Miguel Valencia-Galindo, Esteban Sáez, Martin Kozakovic, Jaromir Havlica, David Kramoliš, Pamela Chávez-Crooker
{"title":"利用 DEM 模型分析玻璃珠在直接剪切试验中产生的生物胶结破损情况","authors":"Miguel Valencia-Galindo, Esteban Sáez, Martin Kozakovic, Jaromir Havlica, David Kramoliš, Pamela Chávez-Crooker","doi":"10.1007/s40571-024-00803-1","DOIUrl":null,"url":null,"abstract":"<p>The improvement of soil behaviour by the bacterial precipitation of calcium carbonate has been extensively studied in geotechnical engineering. However, the evolution of bio-cementation bonds under shear conditions is only partially understood. This research presents a micromechanical approach to gain a deeper insight into the interaction between bio-cemented particles. A series of glass bead samples were treated with Microbial Induced Calcite Precipitation (MICP) and then subjected to direct shear tests. A calibrated model based on the Discrete Element Method was used to reproduce the macro-mechanical paths observed in the experiments, allowing the detailed analysis and description of the bond evolution at the microscopic scale in the treated samples. In general, it was found that a higher rate of bond breakage occurred before the peak shear strength was reached, and this was followed by a relatively constant rate of bond breakage associated with a macroscopic softening trend. Tensile stress was identified as the primary fracture mechanism. Finally, it was determined that the bond breakage mechanism is influenced by several factors, such as bond distribution, particle array, and the mechanical parameters of the bond.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"74 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the breakage of the bio-cementation generated on glass beads during a direct shear test using a DEM model\",\"authors\":\"Miguel Valencia-Galindo, Esteban Sáez, Martin Kozakovic, Jaromir Havlica, David Kramoliš, Pamela Chávez-Crooker\",\"doi\":\"10.1007/s40571-024-00803-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The improvement of soil behaviour by the bacterial precipitation of calcium carbonate has been extensively studied in geotechnical engineering. However, the evolution of bio-cementation bonds under shear conditions is only partially understood. This research presents a micromechanical approach to gain a deeper insight into the interaction between bio-cemented particles. A series of glass bead samples were treated with Microbial Induced Calcite Precipitation (MICP) and then subjected to direct shear tests. A calibrated model based on the Discrete Element Method was used to reproduce the macro-mechanical paths observed in the experiments, allowing the detailed analysis and description of the bond evolution at the microscopic scale in the treated samples. In general, it was found that a higher rate of bond breakage occurred before the peak shear strength was reached, and this was followed by a relatively constant rate of bond breakage associated with a macroscopic softening trend. Tensile stress was identified as the primary fracture mechanism. Finally, it was determined that the bond breakage mechanism is influenced by several factors, such as bond distribution, particle array, and the mechanical parameters of the bond.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00803-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00803-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Analysis of the breakage of the bio-cementation generated on glass beads during a direct shear test using a DEM model
The improvement of soil behaviour by the bacterial precipitation of calcium carbonate has been extensively studied in geotechnical engineering. However, the evolution of bio-cementation bonds under shear conditions is only partially understood. This research presents a micromechanical approach to gain a deeper insight into the interaction between bio-cemented particles. A series of glass bead samples were treated with Microbial Induced Calcite Precipitation (MICP) and then subjected to direct shear tests. A calibrated model based on the Discrete Element Method was used to reproduce the macro-mechanical paths observed in the experiments, allowing the detailed analysis and description of the bond evolution at the microscopic scale in the treated samples. In general, it was found that a higher rate of bond breakage occurred before the peak shear strength was reached, and this was followed by a relatively constant rate of bond breakage associated with a macroscopic softening trend. Tensile stress was identified as the primary fracture mechanism. Finally, it was determined that the bond breakage mechanism is influenced by several factors, such as bond distribution, particle array, and the mechanical parameters of the bond.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.