将钴催化剂和氢氧化胆碱组合作为绿色介质用于腈类的 Sonogashira 偶联和水合的范围和局限性

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemical Sciences Pub Date : 2024-07-29 DOI:10.1007/s12039-024-02288-0
Yujin Sim, Su-Jeong Lee, Seung-Hoi Kim
{"title":"将钴催化剂和氢氧化胆碱组合作为绿色介质用于腈类的 Sonogashira 偶联和水合的范围和局限性","authors":"Yujin Sim,&nbsp;Su-Jeong Lee,&nbsp;Seung-Hoi Kim","doi":"10.1007/s12039-024-02288-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Sonogashira coupling reaction and hydration of nitriles were demonstrated using a facile catalytic system comprising a readily available cobalt salt and an environmentally friendly room-temperature ionic liquid, choline hydroxide (ChOH). The present system offers an alternative pathway for constructing C<sub>sp</sub>–C<sub>sp2</sub> bonds through the alkynylation of aryl iodides in an aqueous environment, without the need for palladium- or copper-metal catalysts, phosphine ligands, or any external bases, albeit with some limited scope. Building upon the advantages and drawbacks of the present system employed in the Sonogashira coupling, we further extend its application to showcase the conversion of nitriles into amides, revealing the respective roles of ChOH and cobalt salt in the hydration of nitriles.</p><h3>Graphic Abstract</h3><p>The Sonogashira coupling and nitrile hydration were accomplished with cobalt salt and choline hydroxide (ChOH). Aryl iodides underwent alkynylation without external additives, albeit with limitations. Roles of ChOH and cobalt salt in nitrile hydration were also demonstrated.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scope and limitations of the combination of cobalt catalyst and choline hydroxide as green media for Sonogashira coupling and hydration of nitriles\",\"authors\":\"Yujin Sim,&nbsp;Su-Jeong Lee,&nbsp;Seung-Hoi Kim\",\"doi\":\"10.1007/s12039-024-02288-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Sonogashira coupling reaction and hydration of nitriles were demonstrated using a facile catalytic system comprising a readily available cobalt salt and an environmentally friendly room-temperature ionic liquid, choline hydroxide (ChOH). The present system offers an alternative pathway for constructing C<sub>sp</sub>–C<sub>sp2</sub> bonds through the alkynylation of aryl iodides in an aqueous environment, without the need for palladium- or copper-metal catalysts, phosphine ligands, or any external bases, albeit with some limited scope. Building upon the advantages and drawbacks of the present system employed in the Sonogashira coupling, we further extend its application to showcase the conversion of nitriles into amides, revealing the respective roles of ChOH and cobalt salt in the hydration of nitriles.</p><h3>Graphic Abstract</h3><p>The Sonogashira coupling and nitrile hydration were accomplished with cobalt salt and choline hydroxide (ChOH). Aryl iodides underwent alkynylation without external additives, albeit with limitations. Roles of ChOH and cobalt salt in nitrile hydration were also demonstrated.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":616,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":\"136 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-024-02288-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02288-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员利用一种简便的催化体系(该体系由一种易于获得的钴盐和一种环保型室温离子液体氢氧化胆碱 (ChOH) 组成),演示了腈的 Sonogashira 偶联反应和水合反应。本系统为在水环境中通过芳基碘化物的炔化作用构建 Csp-Csp2 键提供了另一种途径,无需使用钯或铜金属催化剂、膦配体或任何外部碱,但范围有限。基于本系统用于 Sonogashira 偶联的优点和缺点,我们进一步扩展了其应用范围,展示了将腈转化为酰胺的过程,揭示了 ChOH 和钴盐在腈水合过程中各自的作用。芳基碘化物在没有外部添加剂的情况下发生了炔化反应,尽管有一定的局限性。还证明了 ChOH 和钴盐在腈水合中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scope and limitations of the combination of cobalt catalyst and choline hydroxide as green media for Sonogashira coupling and hydration of nitriles

The Sonogashira coupling reaction and hydration of nitriles were demonstrated using a facile catalytic system comprising a readily available cobalt salt and an environmentally friendly room-temperature ionic liquid, choline hydroxide (ChOH). The present system offers an alternative pathway for constructing Csp–Csp2 bonds through the alkynylation of aryl iodides in an aqueous environment, without the need for palladium- or copper-metal catalysts, phosphine ligands, or any external bases, albeit with some limited scope. Building upon the advantages and drawbacks of the present system employed in the Sonogashira coupling, we further extend its application to showcase the conversion of nitriles into amides, revealing the respective roles of ChOH and cobalt salt in the hydration of nitriles.

Graphic Abstract

The Sonogashira coupling and nitrile hydration were accomplished with cobalt salt and choline hydroxide (ChOH). Aryl iodides underwent alkynylation without external additives, albeit with limitations. Roles of ChOH and cobalt salt in nitrile hydration were also demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
5.90%
发文量
107
审稿时长
1 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
期刊最新文献
Functionalized graphene nanofiber-based low-cost composite membrane for vanadium redox flow battery applications Synthesis and characterization of a new coordination polymer of copper (II): Catalytic application for reductive degradation of dyes under dark Copper-catalyzed synthesis of 3-substituted isocoumarins from 2-halogenation benzoic acid and alkynes Microfluidic synthesis of calcium tungstate CaWO4 Cu/H–ZSM-5: A highly active and selective catalyst for the production of γ-valerolactone from biomass-derived levulinic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1