Bo Jing, Wenjuan Shi, Ying Wang, Zhongmin Zhai, Tao Chen
{"title":"添加聚γ-谷氨酸对不同水分条件下土壤氮的转化和分布的影响","authors":"Bo Jing, Wenjuan Shi, Ying Wang, Zhongmin Zhai, Tao Chen","doi":"10.1111/sum.13100","DOIUrl":null,"url":null,"abstract":"The impact of external poly‐γ‐glutamic acid (γ‐PGA) on soil nitrogen (N) transformation and distribution remains unclear, despite its contrasting effects on N use efficiency. Therefore, soil culture and soil column experiments were conducted using three different γ‐PGA addition rates (0%, 4% and 8% of dry soil weight, w/w) under different soil water contents (40%, 60% and 80% of field water capacity) and dry–wet cycles (0, 2, 4 and 8 times cycles; a single dry–wet cycle involved reducing soil water content from 80% to 40% of field water capacity) in sandy loam soil. The results of soil culture experiment showed that the γ‐PGA significantly increased soil –N and –N contents, as well as nitrification and transformation rates. However, these effects were observed to be influenced by both the culture time and soil water content. In addition, the results of soil column experiment showed that γ‐PGA not only significantly enhanced the soil inorganic nitrogen content within the 0–20 cm soil layer, but also improved water retention capacity. However, the differences between the γ‐PGA treatments gradually diminished with an increase in dry–wet cycle times. These results indicate that γ‐PGA addition enhanced soil inorganic N content and soil water retention by influencing soil N transformation and water distribution. However, the impact of γ‐PGA addition on soil improvement was regulated by soil water content, which should be taken into full consideration in agricultural practices.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"74 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of poly‐γ‐glutamic acid addition on the transformation and distribution of soil nitrogen under different water conditions\",\"authors\":\"Bo Jing, Wenjuan Shi, Ying Wang, Zhongmin Zhai, Tao Chen\",\"doi\":\"10.1111/sum.13100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of external poly‐γ‐glutamic acid (γ‐PGA) on soil nitrogen (N) transformation and distribution remains unclear, despite its contrasting effects on N use efficiency. Therefore, soil culture and soil column experiments were conducted using three different γ‐PGA addition rates (0%, 4% and 8% of dry soil weight, w/w) under different soil water contents (40%, 60% and 80% of field water capacity) and dry–wet cycles (0, 2, 4 and 8 times cycles; a single dry–wet cycle involved reducing soil water content from 80% to 40% of field water capacity) in sandy loam soil. The results of soil culture experiment showed that the γ‐PGA significantly increased soil –N and –N contents, as well as nitrification and transformation rates. However, these effects were observed to be influenced by both the culture time and soil water content. In addition, the results of soil column experiment showed that γ‐PGA not only significantly enhanced the soil inorganic nitrogen content within the 0–20 cm soil layer, but also improved water retention capacity. However, the differences between the γ‐PGA treatments gradually diminished with an increase in dry–wet cycle times. These results indicate that γ‐PGA addition enhanced soil inorganic N content and soil water retention by influencing soil N transformation and water distribution. However, the impact of γ‐PGA addition on soil improvement was regulated by soil water content, which should be taken into full consideration in agricultural practices.\",\"PeriodicalId\":21759,\"journal\":{\"name\":\"Soil Use and Management\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Use and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/sum.13100\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Use and Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/sum.13100","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Effects of poly‐γ‐glutamic acid addition on the transformation and distribution of soil nitrogen under different water conditions
The impact of external poly‐γ‐glutamic acid (γ‐PGA) on soil nitrogen (N) transformation and distribution remains unclear, despite its contrasting effects on N use efficiency. Therefore, soil culture and soil column experiments were conducted using three different γ‐PGA addition rates (0%, 4% and 8% of dry soil weight, w/w) under different soil water contents (40%, 60% and 80% of field water capacity) and dry–wet cycles (0, 2, 4 and 8 times cycles; a single dry–wet cycle involved reducing soil water content from 80% to 40% of field water capacity) in sandy loam soil. The results of soil culture experiment showed that the γ‐PGA significantly increased soil –N and –N contents, as well as nitrification and transformation rates. However, these effects were observed to be influenced by both the culture time and soil water content. In addition, the results of soil column experiment showed that γ‐PGA not only significantly enhanced the soil inorganic nitrogen content within the 0–20 cm soil layer, but also improved water retention capacity. However, the differences between the γ‐PGA treatments gradually diminished with an increase in dry–wet cycle times. These results indicate that γ‐PGA addition enhanced soil inorganic N content and soil water retention by influencing soil N transformation and water distribution. However, the impact of γ‐PGA addition on soil improvement was regulated by soil water content, which should be taken into full consideration in agricultural practices.
期刊介绍:
Soil Use and Management publishes in soil science, earth and environmental science, agricultural science, and engineering fields. The submitted papers should consider the underlying mechanisms governing the natural and anthropogenic processes which affect soil systems, and should inform policy makers and/or practitioners on the sustainable use and management of soil resources. Interdisciplinary studies, e.g. linking soil with climate change, biodiversity, global health, and the UN’s sustainable development goals, with strong novelty, wide implications, and unexpected outcomes are welcomed.