{"title":"表面改性碳纳米管纳米吸附剂去除水介质中的染料","authors":"Tayyaba Jamil","doi":"10.3103/S1063455X24040040","DOIUrl":null,"url":null,"abstract":"<p>Due to the rapid growth of industries, and population the water shortage has become a global problem. The most hazardous organic contaminants found in textile wastewater are dyes. There are several techniques for removing dyes from wastewater, but the majority of them are costly and time-consuming. The most practiced technique for removing dyes is adsorption. Carbon nanotubes (CNTs) are employed extensively in the water treatment industry because of their superior mechanical strength, high aspect ratio, toughness, and defined cylindrical hollow structure. The hydrophobic wall and cost of CNTs restrict their usage on a commercial scale, however, this problem has been partially alleviated by altering their surfaces or doping with other metal oxides. The effect of surface alteration, on the adsorption potential, characterization, and removal effectiveness of CNTs are discussed in detail. The market value and overall demand for CNTs are thoroughly explored. The process variables influencing the sorption mechanism and removal efficiencies such as adsorbent dose, pH, contact time, and temperature are discussed in detail. The economic viability of CNTs is checked by the desorption and reusability of adsorbents. The literature supports the claim that surface modification significantly increased adsorption capacity and removal efficiency. However, more research should be needed to explore non-toxic modifiers for improved surface activation.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":"46 4","pages":"397 - 413"},"PeriodicalIF":0.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Modification of Carbon Nanotubes-Based (CNTs) Nano Adsorbent for Removing Dyes from Aqueous Media\",\"authors\":\"Tayyaba Jamil\",\"doi\":\"10.3103/S1063455X24040040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the rapid growth of industries, and population the water shortage has become a global problem. The most hazardous organic contaminants found in textile wastewater are dyes. There are several techniques for removing dyes from wastewater, but the majority of them are costly and time-consuming. The most practiced technique for removing dyes is adsorption. Carbon nanotubes (CNTs) are employed extensively in the water treatment industry because of their superior mechanical strength, high aspect ratio, toughness, and defined cylindrical hollow structure. The hydrophobic wall and cost of CNTs restrict their usage on a commercial scale, however, this problem has been partially alleviated by altering their surfaces or doping with other metal oxides. The effect of surface alteration, on the adsorption potential, characterization, and removal effectiveness of CNTs are discussed in detail. The market value and overall demand for CNTs are thoroughly explored. The process variables influencing the sorption mechanism and removal efficiencies such as adsorbent dose, pH, contact time, and temperature are discussed in detail. The economic viability of CNTs is checked by the desorption and reusability of adsorbents. The literature supports the claim that surface modification significantly increased adsorption capacity and removal efficiency. However, more research should be needed to explore non-toxic modifiers for improved surface activation.</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":\"46 4\",\"pages\":\"397 - 413\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X24040040\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24040040","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Surface Modification of Carbon Nanotubes-Based (CNTs) Nano Adsorbent for Removing Dyes from Aqueous Media
Due to the rapid growth of industries, and population the water shortage has become a global problem. The most hazardous organic contaminants found in textile wastewater are dyes. There are several techniques for removing dyes from wastewater, but the majority of them are costly and time-consuming. The most practiced technique for removing dyes is adsorption. Carbon nanotubes (CNTs) are employed extensively in the water treatment industry because of their superior mechanical strength, high aspect ratio, toughness, and defined cylindrical hollow structure. The hydrophobic wall and cost of CNTs restrict their usage on a commercial scale, however, this problem has been partially alleviated by altering their surfaces or doping with other metal oxides. The effect of surface alteration, on the adsorption potential, characterization, and removal effectiveness of CNTs are discussed in detail. The market value and overall demand for CNTs are thoroughly explored. The process variables influencing the sorption mechanism and removal efficiencies such as adsorbent dose, pH, contact time, and temperature are discussed in detail. The economic viability of CNTs is checked by the desorption and reusability of adsorbents. The literature supports the claim that surface modification significantly increased adsorption capacity and removal efficiency. However, more research should be needed to explore non-toxic modifiers for improved surface activation.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.