{"title":"提高印度市场期权定价的准确性:一种 CNN-BiLSTM 方法","authors":"Akanksha Sharma, Chandan Kumar Verma, Priya Singh","doi":"10.1007/s10614-024-10689-z","DOIUrl":null,"url":null,"abstract":"<p>Due to overly optimistic economic and statistical assumptions, the classical option pricing model frequently falls short of ideal predictions. Rapid progress in artificial intelligence, the availability of massive datasets, and the rise in computational power in machines have all created an environment conducive to the development of complex methods for predicting financial derivatives prices. This study proposes a hybrid deep learning (DL) based predictive model for accurate and prompt prediction of option prices by fusing a one-dimensional convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). A set of 15 predictive factors is carefully built under the umbrella of fundamental market data and technical indicators. Our proposed model is compared with other DL-based models using six evaluation metrics-root mean square error (RMSE), mean absolute percentage error, mean percentage error, determination coefficient (<span>\\(R^2\\)</span>), maximum error and median absolute error. Further, statistical analysis of models is also done using one-way ANOVA and posthoc analysis using the Tukey HSD test to demonstrate that the CNN-BiLSTM model outperforms competing models in terms of fit and prediction accuracy.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Option Pricing Accuracy in the Indian Market: A CNN-BiLSTM Approach\",\"authors\":\"Akanksha Sharma, Chandan Kumar Verma, Priya Singh\",\"doi\":\"10.1007/s10614-024-10689-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to overly optimistic economic and statistical assumptions, the classical option pricing model frequently falls short of ideal predictions. Rapid progress in artificial intelligence, the availability of massive datasets, and the rise in computational power in machines have all created an environment conducive to the development of complex methods for predicting financial derivatives prices. This study proposes a hybrid deep learning (DL) based predictive model for accurate and prompt prediction of option prices by fusing a one-dimensional convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). A set of 15 predictive factors is carefully built under the umbrella of fundamental market data and technical indicators. Our proposed model is compared with other DL-based models using six evaluation metrics-root mean square error (RMSE), mean absolute percentage error, mean percentage error, determination coefficient (<span>\\\\(R^2\\\\)</span>), maximum error and median absolute error. Further, statistical analysis of models is also done using one-way ANOVA and posthoc analysis using the Tukey HSD test to demonstrate that the CNN-BiLSTM model outperforms competing models in terms of fit and prediction accuracy.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10689-z\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10689-z","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Enhancing Option Pricing Accuracy in the Indian Market: A CNN-BiLSTM Approach
Due to overly optimistic economic and statistical assumptions, the classical option pricing model frequently falls short of ideal predictions. Rapid progress in artificial intelligence, the availability of massive datasets, and the rise in computational power in machines have all created an environment conducive to the development of complex methods for predicting financial derivatives prices. This study proposes a hybrid deep learning (DL) based predictive model for accurate and prompt prediction of option prices by fusing a one-dimensional convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). A set of 15 predictive factors is carefully built under the umbrella of fundamental market data and technical indicators. Our proposed model is compared with other DL-based models using six evaluation metrics-root mean square error (RMSE), mean absolute percentage error, mean percentage error, determination coefficient (\(R^2\)), maximum error and median absolute error. Further, statistical analysis of models is also done using one-way ANOVA and posthoc analysis using the Tukey HSD test to demonstrate that the CNN-BiLSTM model outperforms competing models in terms of fit and prediction accuracy.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing