提高印度市场期权定价的准确性:一种 CNN-BiLSTM 方法

IF 1.9 4区 经济学 Q2 ECONOMICS Computational Economics Pub Date : 2024-08-01 DOI:10.1007/s10614-024-10689-z
Akanksha Sharma, Chandan Kumar Verma, Priya Singh
{"title":"提高印度市场期权定价的准确性:一种 CNN-BiLSTM 方法","authors":"Akanksha Sharma, Chandan Kumar Verma, Priya Singh","doi":"10.1007/s10614-024-10689-z","DOIUrl":null,"url":null,"abstract":"<p>Due to overly optimistic economic and statistical assumptions, the classical option pricing model frequently falls short of ideal predictions. Rapid progress in artificial intelligence, the availability of massive datasets, and the rise in computational power in machines have all created an environment conducive to the development of complex methods for predicting financial derivatives prices. This study proposes a hybrid deep learning (DL) based predictive model for accurate and prompt prediction of option prices by fusing a one-dimensional convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). A set of 15 predictive factors is carefully built under the umbrella of fundamental market data and technical indicators. Our proposed model is compared with other DL-based models using six evaluation metrics-root mean square error (RMSE), mean absolute percentage error, mean percentage error, determination coefficient (<span>\\(R^2\\)</span>), maximum error and median absolute error. Further, statistical analysis of models is also done using one-way ANOVA and posthoc analysis using the Tukey HSD test to demonstrate that the CNN-BiLSTM model outperforms competing models in terms of fit and prediction accuracy.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Option Pricing Accuracy in the Indian Market: A CNN-BiLSTM Approach\",\"authors\":\"Akanksha Sharma, Chandan Kumar Verma, Priya Singh\",\"doi\":\"10.1007/s10614-024-10689-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to overly optimistic economic and statistical assumptions, the classical option pricing model frequently falls short of ideal predictions. Rapid progress in artificial intelligence, the availability of massive datasets, and the rise in computational power in machines have all created an environment conducive to the development of complex methods for predicting financial derivatives prices. This study proposes a hybrid deep learning (DL) based predictive model for accurate and prompt prediction of option prices by fusing a one-dimensional convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). A set of 15 predictive factors is carefully built under the umbrella of fundamental market data and technical indicators. Our proposed model is compared with other DL-based models using six evaluation metrics-root mean square error (RMSE), mean absolute percentage error, mean percentage error, determination coefficient (<span>\\\\(R^2\\\\)</span>), maximum error and median absolute error. Further, statistical analysis of models is also done using one-way ANOVA and posthoc analysis using the Tukey HSD test to demonstrate that the CNN-BiLSTM model outperforms competing models in terms of fit and prediction accuracy.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10689-z\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10689-z","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

由于过于乐观的经济和统计假设,经典期权定价模型经常达不到理想的预测效果。人工智能的快速进步、海量数据集的可用性以及机器计算能力的提升,都为开发复杂的金融衍生品价格预测方法创造了有利环境。本研究通过融合一维卷积神经网络(CNN)和双向长短期记忆(BiLSTM),提出了一种基于混合深度学习(DL)的预测模型,用于准确及时地预测期权价格。在基本市场数据和技术指标的保护伞下,我们精心构建了一组 15 个预测因子。我们提出的模型与其他基于 DL 的模型进行了比较,使用了六个评估指标--均方根误差 (RMSE)、平均绝对误差百分比、平均误差百分比、判定系数 (\(R^2\))、最大误差和绝对误差中值。此外,还使用单因子方差分析对模型进行统计分析,并使用 Tukey HSD 检验进行事后分析,以证明 CNN-BiLSTM 模型在拟合度和预测准确性方面优于其他竞争模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Option Pricing Accuracy in the Indian Market: A CNN-BiLSTM Approach

Due to overly optimistic economic and statistical assumptions, the classical option pricing model frequently falls short of ideal predictions. Rapid progress in artificial intelligence, the availability of massive datasets, and the rise in computational power in machines have all created an environment conducive to the development of complex methods for predicting financial derivatives prices. This study proposes a hybrid deep learning (DL) based predictive model for accurate and prompt prediction of option prices by fusing a one-dimensional convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). A set of 15 predictive factors is carefully built under the umbrella of fundamental market data and technical indicators. Our proposed model is compared with other DL-based models using six evaluation metrics-root mean square error (RMSE), mean absolute percentage error, mean percentage error, determination coefficient (\(R^2\)), maximum error and median absolute error. Further, statistical analysis of models is also done using one-way ANOVA and posthoc analysis using the Tukey HSD test to demonstrate that the CNN-BiLSTM model outperforms competing models in terms of fit and prediction accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Economics
Computational Economics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
15.00%
发文量
119
审稿时长
12 months
期刊介绍: Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing
期刊最新文献
Assessing the Dual Impact of the Social Media Platforms on Psychological Well-being: A Multiple-Option Descriptive-Predictive Framework Modeling Asset Price Process: An Approach for Imaging Price Chart with Generative Diffusion Models Is the Price of Ether Driven by Demand or Pure Speculation? Iterative Deep Learning Approach to Active Portfolio Management with Sentiment Factors Asset Prices with Investor Protection in the Cross-Sectional Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1