Shengyue Tao, Xiaohua Che, Wenxiao Qiao, Jiale Wang, Qiqi Zhao
{"title":"对脉冲压缩信号驱动的线性相控阵声发射器在开放式钻孔中产生的声场进行数值模拟","authors":"Shengyue Tao, Xiaohua Che, Wenxiao Qiao, Jiale Wang, Qiqi Zhao","doi":"10.1111/1365-2478.13582","DOIUrl":null,"url":null,"abstract":"<p>Acoustic logging is an important method used to determine formation velocities near boreholes. However, in practice, determining accurate formation velocities from acoustic logging data is challenging because of the presence of various noise interferences. Accordingly, a method to increase the amplitudes of refracted waves in open boreholes is proposed herein on the basis of the directional radiation technology of pulse compression signal–driven linear phased array acoustic transmitters. The waveforms generated by a Ricker monopole acoustic transmitter, linear frequency modulation monopole acoustic transmitter and pulse compression signal–driven linear phased array acoustic transmitter in a fluid-filled open borehole are numerically simulated by employing the finite-difference method. The effects of the pulse compression signal–driven linear phased array parameters on the amplitudes of the refracted compressional and shear waves are studied. Results show that borehole mode waves with the same velocities and dispersion characteristics can be determined using the pulse compression signal–driven linear phased array acoustic and Ricker monopole acoustic transmitters in fluid-filled open boreholes. Pulse compression signal–driven linear phased array acoustic transmitters leverage the advantages of pulse compression and phased array technologies, ensuring that a single element can radiate more acoustic energy, whereas pulse compression signal–driven linear phased array parameters can be modulated to further increase the amplitudes of the refracted compressional and shear waves. Compared with Ricker and linear frequency modulation monopole acoustic transmitters, pulse compression signal–driven linear phased array acoustic transmitters can provide downhole received waveforms of better quality and improved a signal-to-noise ratio of the mode wave dispersion curves obtained using the downhole received waveforms. Because pulse compression signal–driven linear phased array acoustic transmitters use linear frequency modulation drive signals of longer duration, the recording time required for the received waveforms is also longer and the amount of data generated is larger, presenting new challenges for downhole data processing and high-speed data transmission.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of acoustic fields in open boreholes generated by linear phased array acoustic transmitters driven by pulse compression signals\",\"authors\":\"Shengyue Tao, Xiaohua Che, Wenxiao Qiao, Jiale Wang, Qiqi Zhao\",\"doi\":\"10.1111/1365-2478.13582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acoustic logging is an important method used to determine formation velocities near boreholes. However, in practice, determining accurate formation velocities from acoustic logging data is challenging because of the presence of various noise interferences. Accordingly, a method to increase the amplitudes of refracted waves in open boreholes is proposed herein on the basis of the directional radiation technology of pulse compression signal–driven linear phased array acoustic transmitters. The waveforms generated by a Ricker monopole acoustic transmitter, linear frequency modulation monopole acoustic transmitter and pulse compression signal–driven linear phased array acoustic transmitter in a fluid-filled open borehole are numerically simulated by employing the finite-difference method. The effects of the pulse compression signal–driven linear phased array parameters on the amplitudes of the refracted compressional and shear waves are studied. Results show that borehole mode waves with the same velocities and dispersion characteristics can be determined using the pulse compression signal–driven linear phased array acoustic and Ricker monopole acoustic transmitters in fluid-filled open boreholes. Pulse compression signal–driven linear phased array acoustic transmitters leverage the advantages of pulse compression and phased array technologies, ensuring that a single element can radiate more acoustic energy, whereas pulse compression signal–driven linear phased array parameters can be modulated to further increase the amplitudes of the refracted compressional and shear waves. Compared with Ricker and linear frequency modulation monopole acoustic transmitters, pulse compression signal–driven linear phased array acoustic transmitters can provide downhole received waveforms of better quality and improved a signal-to-noise ratio of the mode wave dispersion curves obtained using the downhole received waveforms. Because pulse compression signal–driven linear phased array acoustic transmitters use linear frequency modulation drive signals of longer duration, the recording time required for the received waveforms is also longer and the amount of data generated is larger, presenting new challenges for downhole data processing and high-speed data transmission.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13582\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13582","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Numerical simulation of acoustic fields in open boreholes generated by linear phased array acoustic transmitters driven by pulse compression signals
Acoustic logging is an important method used to determine formation velocities near boreholes. However, in practice, determining accurate formation velocities from acoustic logging data is challenging because of the presence of various noise interferences. Accordingly, a method to increase the amplitudes of refracted waves in open boreholes is proposed herein on the basis of the directional radiation technology of pulse compression signal–driven linear phased array acoustic transmitters. The waveforms generated by a Ricker monopole acoustic transmitter, linear frequency modulation monopole acoustic transmitter and pulse compression signal–driven linear phased array acoustic transmitter in a fluid-filled open borehole are numerically simulated by employing the finite-difference method. The effects of the pulse compression signal–driven linear phased array parameters on the amplitudes of the refracted compressional and shear waves are studied. Results show that borehole mode waves with the same velocities and dispersion characteristics can be determined using the pulse compression signal–driven linear phased array acoustic and Ricker monopole acoustic transmitters in fluid-filled open boreholes. Pulse compression signal–driven linear phased array acoustic transmitters leverage the advantages of pulse compression and phased array technologies, ensuring that a single element can radiate more acoustic energy, whereas pulse compression signal–driven linear phased array parameters can be modulated to further increase the amplitudes of the refracted compressional and shear waves. Compared with Ricker and linear frequency modulation monopole acoustic transmitters, pulse compression signal–driven linear phased array acoustic transmitters can provide downhole received waveforms of better quality and improved a signal-to-noise ratio of the mode wave dispersion curves obtained using the downhole received waveforms. Because pulse compression signal–driven linear phased array acoustic transmitters use linear frequency modulation drive signals of longer duration, the recording time required for the received waveforms is also longer and the amount of data generated is larger, presenting new challenges for downhole data processing and high-speed data transmission.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.