P. Mohan Babu, M. Saravanan, S. Krishnakumar, S. R. Sachin
{"title":"多层金属板成型的显式动态分析--模拟分析","authors":"P. Mohan Babu, M. Saravanan, S. Krishnakumar, S. R. Sachin","doi":"10.1007/s11223-024-00657-1","DOIUrl":null,"url":null,"abstract":"<p>The formation of sheet metal products is now widely utilized for multi-purposes in the automotive, aerospace and in industrial sectors. In this study, the phenomenon of plastic strain, von Mises stress, shear train by the V-bending method and to analyze the results theoretically, by using a special program called ANSYS. The multi-layer sheet metal in the rectangular plate of Al and Cu with three different thicknesses (1.0, 1.25, and 1.5 mm) is carried out by the Explicit solver. These parameters have been investigated such as effect sheet setting condition (Al/Cu/Al and Cu/Al/Cu), sheet thickness, and traveling of punch. In the explicit analysis, the position of Al/Cu/Al achieved maximum plastic strain in maximum thickness and punch travel is improved to save computation duration at cost of solution accuracy. Also, maximum shear stress obtained in larger punch travel in position Al/Cu/Al than Cu/Al/Cu. As the thickness is increased, the shear stress and von Mises stress becomes increases in Al/Cu/Al, and position of Cu/Al/Cu produced decreasing shear stress and von Mises stress in increasing sheet thickness with different punch travel.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"174 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit Dynamic Analysis of Multilayer Sheet Metal Forming – A Simulatory Analysis\",\"authors\":\"P. Mohan Babu, M. Saravanan, S. Krishnakumar, S. R. Sachin\",\"doi\":\"10.1007/s11223-024-00657-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The formation of sheet metal products is now widely utilized for multi-purposes in the automotive, aerospace and in industrial sectors. In this study, the phenomenon of plastic strain, von Mises stress, shear train by the V-bending method and to analyze the results theoretically, by using a special program called ANSYS. The multi-layer sheet metal in the rectangular plate of Al and Cu with three different thicknesses (1.0, 1.25, and 1.5 mm) is carried out by the Explicit solver. These parameters have been investigated such as effect sheet setting condition (Al/Cu/Al and Cu/Al/Cu), sheet thickness, and traveling of punch. In the explicit analysis, the position of Al/Cu/Al achieved maximum plastic strain in maximum thickness and punch travel is improved to save computation duration at cost of solution accuracy. Also, maximum shear stress obtained in larger punch travel in position Al/Cu/Al than Cu/Al/Cu. As the thickness is increased, the shear stress and von Mises stress becomes increases in Al/Cu/Al, and position of Cu/Al/Cu produced decreasing shear stress and von Mises stress in increasing sheet thickness with different punch travel.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":\"174 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-024-00657-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00657-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
目前,钣金产品的成型被广泛用于汽车、航空航天和工业领域的多种用途。在本研究中,采用 V 形弯曲法研究了塑性应变、von Mises 应力、剪切火车等现象,并使用 ANSYS 专门程序对结果进行了理论分析。采用显式求解器对铝和铜矩形板中的多层金属板进行了三种不同厚度(1.0、1.25 和 1.5 毫米)的分析。对这些参数进行了研究,如影响板材设置条件(Al/Cu/Al 和 Cu/Al/Cu)、板材厚度和冲头行程。在显式分析中,Al/Cu/Al 在最大厚度和冲头行程中达到最大塑性应变的位置得到了改进,从而以牺牲求解精度为代价节省了计算时间。此外,与 Cu/Al/Cu 相比,Al/Cu/Al 位置的冲头行程越大,获得的剪应力越大。随着厚度的增加,Al/Cu/Al 的剪应力和 von Mises 应力也随之增大,而 Cu/Al/Cu 位置在不同的冲头行程下,随着板材厚度的增加,剪应力和 von Mises 应力也随之减小。
Explicit Dynamic Analysis of Multilayer Sheet Metal Forming – A Simulatory Analysis
The formation of sheet metal products is now widely utilized for multi-purposes in the automotive, aerospace and in industrial sectors. In this study, the phenomenon of plastic strain, von Mises stress, shear train by the V-bending method and to analyze the results theoretically, by using a special program called ANSYS. The multi-layer sheet metal in the rectangular plate of Al and Cu with three different thicknesses (1.0, 1.25, and 1.5 mm) is carried out by the Explicit solver. These parameters have been investigated such as effect sheet setting condition (Al/Cu/Al and Cu/Al/Cu), sheet thickness, and traveling of punch. In the explicit analysis, the position of Al/Cu/Al achieved maximum plastic strain in maximum thickness and punch travel is improved to save computation duration at cost of solution accuracy. Also, maximum shear stress obtained in larger punch travel in position Al/Cu/Al than Cu/Al/Cu. As the thickness is increased, the shear stress and von Mises stress becomes increases in Al/Cu/Al, and position of Cu/Al/Cu produced decreasing shear stress and von Mises stress in increasing sheet thickness with different punch travel.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.