Thierry N J Fouquet, Robert B Cody, Laurence Charles
{"title":"利用质谱分析不溶性合成聚合物结构特征的降解策略。","authors":"Thierry N J Fouquet, Robert B Cody, Laurence Charles","doi":"10.1002/mas.21903","DOIUrl":null,"url":null,"abstract":"<p><p>With the advent of soft ionization techniques such as electrospray (ESI) and matrix-assisted laser desorption/ionization (MALDI) to produce intact gas-phase ions from nonvolatile macromolecules, mass spectrometry has become an essential technique in the field of polymeric materials. However, (co)polymers of very high molecular weight or with reticulated architectures still escape ESI or MALDI, mainly due to solubility issues. Strategies developed to tackle such an analytical challenge all rely on sample degradation to produce low-mass species amenable to existing ionization methods. Yet, chain degradation needs to be partial and controlled to generate sufficiently large species that still contain topological or architectural information. The present article reviews the different analytical degradation strategies implemented to perform mass spectrometry of these challenging synthetic polymers, covering thermal degradation approaches in sources developed in the 2000s, off-line sample pre-treatments for controlled chemical degradation of polymeric substrates, and most recent achievements employing reactive ionization modes to perform chemolysis on-line with MS.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation strategies for structural characterization of insoluble synthetic polymers by mass spectrometry.\",\"authors\":\"Thierry N J Fouquet, Robert B Cody, Laurence Charles\",\"doi\":\"10.1002/mas.21903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advent of soft ionization techniques such as electrospray (ESI) and matrix-assisted laser desorption/ionization (MALDI) to produce intact gas-phase ions from nonvolatile macromolecules, mass spectrometry has become an essential technique in the field of polymeric materials. However, (co)polymers of very high molecular weight or with reticulated architectures still escape ESI or MALDI, mainly due to solubility issues. Strategies developed to tackle such an analytical challenge all rely on sample degradation to produce low-mass species amenable to existing ionization methods. Yet, chain degradation needs to be partial and controlled to generate sufficiently large species that still contain topological or architectural information. The present article reviews the different analytical degradation strategies implemented to perform mass spectrometry of these challenging synthetic polymers, covering thermal degradation approaches in sources developed in the 2000s, off-line sample pre-treatments for controlled chemical degradation of polymeric substrates, and most recent achievements employing reactive ionization modes to perform chemolysis on-line with MS.</p>\",\"PeriodicalId\":206,\"journal\":{\"name\":\"Mass Spectrometry Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass Spectrometry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/mas.21903\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mas.21903","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
摘要
随着电喷雾(ESI)和基质辅助激光解吸/电离(MALDI)等软电离技术的出现,从非挥发性大分子中产生完整的气相离子,质谱分析已成为聚合物材料领域的一项重要技术。然而,分子量极高或具有网状结构的(共)聚合物仍然无法通过 ESI 或 MALDI 分析,这主要是由于溶解度问题。为解决这一分析难题而开发的策略都依赖于样品降解,以产生适合现有电离方法的低质量物种。然而,链式降解需要部分进行并加以控制,以产生足够大的物种,其中仍包含拓扑或结构信息。本文回顾了为对这些具有挑战性的合成聚合物进行质谱分析而采用的不同分析降解策略,包括 2000 年代开发的源热降解方法、用于聚合物基质受控化学降解的离线样品预处理方法,以及采用反应电离模式与质谱联机进行化学溶解的最新成果。
Degradation strategies for structural characterization of insoluble synthetic polymers by mass spectrometry.
With the advent of soft ionization techniques such as electrospray (ESI) and matrix-assisted laser desorption/ionization (MALDI) to produce intact gas-phase ions from nonvolatile macromolecules, mass spectrometry has become an essential technique in the field of polymeric materials. However, (co)polymers of very high molecular weight or with reticulated architectures still escape ESI or MALDI, mainly due to solubility issues. Strategies developed to tackle such an analytical challenge all rely on sample degradation to produce low-mass species amenable to existing ionization methods. Yet, chain degradation needs to be partial and controlled to generate sufficiently large species that still contain topological or architectural information. The present article reviews the different analytical degradation strategies implemented to perform mass spectrometry of these challenging synthetic polymers, covering thermal degradation approaches in sources developed in the 2000s, off-line sample pre-treatments for controlled chemical degradation of polymeric substrates, and most recent achievements employing reactive ionization modes to perform chemolysis on-line with MS.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.