Entao Li , Qizan Gong , Jiachen Zhang , Xiaoping Guo , Wenyu Xie , Da Chen , Yanqiong Shen , Dongxiang Hong , Zhihao Li , Qianqian Wang , Chao Wang , Yucai Wang , Sandra Chiu
{"title":"一种 mpox 四价 mRNA 疫苗能保护小鼠免受致命的疫苗病毒挑战。","authors":"Entao Li , Qizan Gong , Jiachen Zhang , Xiaoping Guo , Wenyu Xie , Da Chen , Yanqiong Shen , Dongxiang Hong , Zhihao Li , Qianqian Wang , Chao Wang , Yucai Wang , Sandra Chiu","doi":"10.1016/j.antiviral.2024.105974","DOIUrl":null,"url":null,"abstract":"<div><p>The outbreak of 2022 monkeypox virus (MPXV) infection in nonendemic regions is a global public health concern. A highly effective and safe MPXV vaccine that is available to the general public is urgently needed to control the mpox pandemic. Here, we developed a multivalent mRNA vaccine candidate, MPXV-1103, which expresses the full-length B6, A35, A29 and M1 proteins with three flexible linkers (G<sub>4</sub>S<sub>1</sub>)<sub>3</sub> in a single sequence. Compared with the monovalent MPXV mRNA vaccine candidates or the quadrivalent mRNA vaccine from mixtures of the four monovalent MPXV mRNA vaccines, MPXV-1103 elicits a robust humoral response and an MPXV-specific T-cell response and protects mice from lethal vaccinia virus (VACV) challenge, with no live virus detected in the nasal or lungs even at dosages as low as 1 μg. Furthermore, analysis of complete blood counts and photomicrographs of tissue from the main organs of mice vaccinated with MPXV-1103 at doses of 5 μg and 20 μg revealed that two doses of MPXV-1103 did not cause any observable pathological changes in the mice. Collectively, our results suggest that MPXV-1103, with features of high efficacy, safety and a simplified manufacturing process, is a promising vaccine candidate for defending against MPXV infection.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"230 ","pages":"Article 105974"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224001839/pdfft?md5=90da3a5580e4b41adbce16a24d727952&pid=1-s2.0-S0166354224001839-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An mpox quadrivalent mRNA vaccine protects mice from lethal vaccinia virus challenge\",\"authors\":\"Entao Li , Qizan Gong , Jiachen Zhang , Xiaoping Guo , Wenyu Xie , Da Chen , Yanqiong Shen , Dongxiang Hong , Zhihao Li , Qianqian Wang , Chao Wang , Yucai Wang , Sandra Chiu\",\"doi\":\"10.1016/j.antiviral.2024.105974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The outbreak of 2022 monkeypox virus (MPXV) infection in nonendemic regions is a global public health concern. A highly effective and safe MPXV vaccine that is available to the general public is urgently needed to control the mpox pandemic. Here, we developed a multivalent mRNA vaccine candidate, MPXV-1103, which expresses the full-length B6, A35, A29 and M1 proteins with three flexible linkers (G<sub>4</sub>S<sub>1</sub>)<sub>3</sub> in a single sequence. Compared with the monovalent MPXV mRNA vaccine candidates or the quadrivalent mRNA vaccine from mixtures of the four monovalent MPXV mRNA vaccines, MPXV-1103 elicits a robust humoral response and an MPXV-specific T-cell response and protects mice from lethal vaccinia virus (VACV) challenge, with no live virus detected in the nasal or lungs even at dosages as low as 1 μg. Furthermore, analysis of complete blood counts and photomicrographs of tissue from the main organs of mice vaccinated with MPXV-1103 at doses of 5 μg and 20 μg revealed that two doses of MPXV-1103 did not cause any observable pathological changes in the mice. Collectively, our results suggest that MPXV-1103, with features of high efficacy, safety and a simplified manufacturing process, is a promising vaccine candidate for defending against MPXV infection.</p></div>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\"230 \",\"pages\":\"Article 105974\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166354224001839/pdfft?md5=90da3a5580e4b41adbce16a24d727952&pid=1-s2.0-S0166354224001839-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166354224001839\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224001839","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
An mpox quadrivalent mRNA vaccine protects mice from lethal vaccinia virus challenge
The outbreak of 2022 monkeypox virus (MPXV) infection in nonendemic regions is a global public health concern. A highly effective and safe MPXV vaccine that is available to the general public is urgently needed to control the mpox pandemic. Here, we developed a multivalent mRNA vaccine candidate, MPXV-1103, which expresses the full-length B6, A35, A29 and M1 proteins with three flexible linkers (G4S1)3 in a single sequence. Compared with the monovalent MPXV mRNA vaccine candidates or the quadrivalent mRNA vaccine from mixtures of the four monovalent MPXV mRNA vaccines, MPXV-1103 elicits a robust humoral response and an MPXV-specific T-cell response and protects mice from lethal vaccinia virus (VACV) challenge, with no live virus detected in the nasal or lungs even at dosages as low as 1 μg. Furthermore, analysis of complete blood counts and photomicrographs of tissue from the main organs of mice vaccinated with MPXV-1103 at doses of 5 μg and 20 μg revealed that two doses of MPXV-1103 did not cause any observable pathological changes in the mice. Collectively, our results suggest that MPXV-1103, with features of high efficacy, safety and a simplified manufacturing process, is a promising vaccine candidate for defending against MPXV infection.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.