{"title":"探索作为桥本氏甲状腺炎患者潜在生物标记物的血清氨基酸特征。","authors":"Ebru Temiz, Sukru Akmese, Ismail Koyuncu, Dursun Barut","doi":"10.1002/bmc.5970","DOIUrl":null,"url":null,"abstract":"<p>Hashimoto's thyroiditis (HT) is an autoimmune disease caused by the immune system attacking healthy tissues. However, the exact pathogenesis of HT remains unclear. Metabolomic analysis was performed to obtain information about the possible pathogenic mechanisms and diagnostic biomarkers of HT. The amino acid profile was analyzed using an LC–MS/MS method using serum samples obtained from 30 patients diagnosed with ultrasonographic imaging and laboratory markers (thyroid stimulating hormone) free thyroxine and thyroid peroxidase) and 30 healthy individuals. There were statistically significant changes in 27 amino acids out of 32 amino acids analyzed (<i>p</i> < 0.05). Based on the receiver operating characteristic curve analysis, the six amino acid (1-methylhistidine, cystine, norvaline, histidine, glutamic acid and leucine) biomarkers showed high sensitivity, specificity (area under the curve > 0.98), positive likelihood ratio and low negative likelihood ratio. Also, according to pathway analysis, degradation of phenylalanine, tyrosine and tryptophan biosynthesis was the highest metabolic pathway according to the impact value (<i>p</i> < 0.001 and impact value = 1.0). We provide serum amino acid profiles of patients with Hashimoto's thyroiditis and identify five potential biomarkers for early diagnosis by clinicians.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring serum amino acid signatures as potential biomarkers in Hashimoto's thyroiditis patients\",\"authors\":\"Ebru Temiz, Sukru Akmese, Ismail Koyuncu, Dursun Barut\",\"doi\":\"10.1002/bmc.5970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hashimoto's thyroiditis (HT) is an autoimmune disease caused by the immune system attacking healthy tissues. However, the exact pathogenesis of HT remains unclear. Metabolomic analysis was performed to obtain information about the possible pathogenic mechanisms and diagnostic biomarkers of HT. The amino acid profile was analyzed using an LC–MS/MS method using serum samples obtained from 30 patients diagnosed with ultrasonographic imaging and laboratory markers (thyroid stimulating hormone) free thyroxine and thyroid peroxidase) and 30 healthy individuals. There were statistically significant changes in 27 amino acids out of 32 amino acids analyzed (<i>p</i> < 0.05). Based on the receiver operating characteristic curve analysis, the six amino acid (1-methylhistidine, cystine, norvaline, histidine, glutamic acid and leucine) biomarkers showed high sensitivity, specificity (area under the curve > 0.98), positive likelihood ratio and low negative likelihood ratio. Also, according to pathway analysis, degradation of phenylalanine, tyrosine and tryptophan biosynthesis was the highest metabolic pathway according to the impact value (<i>p</i> < 0.001 and impact value = 1.0). We provide serum amino acid profiles of patients with Hashimoto's thyroiditis and identify five potential biomarkers for early diagnosis by clinicians.</p>\",\"PeriodicalId\":8861,\"journal\":{\"name\":\"Biomedical Chromatography\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Chromatography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5970\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5970","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring serum amino acid signatures as potential biomarkers in Hashimoto's thyroiditis patients
Hashimoto's thyroiditis (HT) is an autoimmune disease caused by the immune system attacking healthy tissues. However, the exact pathogenesis of HT remains unclear. Metabolomic analysis was performed to obtain information about the possible pathogenic mechanisms and diagnostic biomarkers of HT. The amino acid profile was analyzed using an LC–MS/MS method using serum samples obtained from 30 patients diagnosed with ultrasonographic imaging and laboratory markers (thyroid stimulating hormone) free thyroxine and thyroid peroxidase) and 30 healthy individuals. There were statistically significant changes in 27 amino acids out of 32 amino acids analyzed (p < 0.05). Based on the receiver operating characteristic curve analysis, the six amino acid (1-methylhistidine, cystine, norvaline, histidine, glutamic acid and leucine) biomarkers showed high sensitivity, specificity (area under the curve > 0.98), positive likelihood ratio and low negative likelihood ratio. Also, according to pathway analysis, degradation of phenylalanine, tyrosine and tryptophan biosynthesis was the highest metabolic pathway according to the impact value (p < 0.001 and impact value = 1.0). We provide serum amino acid profiles of patients with Hashimoto's thyroiditis and identify five potential biomarkers for early diagnosis by clinicians.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.