深度神经网络中的 1/f 噪声自组织。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED Chaos Pub Date : 2024-08-01 DOI:10.1063/5.0224138
Nicholas Jia Le Chong, Ling Feng
{"title":"深度神经网络中的 1/f 噪声自组织。","authors":"Nicholas Jia Le Chong, Ling Feng","doi":"10.1063/5.0224138","DOIUrl":null,"url":null,"abstract":"<p><p>In biological neural networks, it has been well recognized that a healthy brain exhibits 1/f noise patterns. However, in artificial neural networks that are increasingly matching or even out-performing human cognition, this phenomenon has yet to be established. In this work, we found that similar to that of their biological counterparts, 1/f noise exists in artificial neural networks when trained on time series classification tasks. Additionally, we found that the activations of the neurons are the closest to 1/f noise when the neurons are highly utilized. Conversely, if the network is too large and many neurons are underutilized, the neuron activations deviate from 1/f noise patterns toward that of white noise.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-organization toward 1/f noise in deep neural networks.\",\"authors\":\"Nicholas Jia Le Chong, Ling Feng\",\"doi\":\"10.1063/5.0224138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In biological neural networks, it has been well recognized that a healthy brain exhibits 1/f noise patterns. However, in artificial neural networks that are increasingly matching or even out-performing human cognition, this phenomenon has yet to be established. In this work, we found that similar to that of their biological counterparts, 1/f noise exists in artificial neural networks when trained on time series classification tasks. Additionally, we found that the activations of the neurons are the closest to 1/f noise when the neurons are highly utilized. Conversely, if the network is too large and many neurons are underutilized, the neuron activations deviate from 1/f noise patterns toward that of white noise.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0224138\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0224138","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在生物神经网络中,人们已经充分认识到,健康的大脑会表现出 1/f 噪声模式。然而,在人工神经网络中,这种现象尚未得到证实,而人工神经网络正越来越多地与人类认知相匹配,甚至超越人类认知。在这项研究中,我们发现人工神经网络在进行时间序列分类任务训练时,会出现与生物网络类似的 1/f 噪声。此外,我们还发现,当神经元被高度利用时,神经元的激活最接近 1/f 噪声。相反,如果网络过大,许多神经元未得到充分利用,神经元激活就会偏离 1/f 噪声模式,趋向于白噪声模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-organization toward 1/f noise in deep neural networks.

In biological neural networks, it has been well recognized that a healthy brain exhibits 1/f noise patterns. However, in artificial neural networks that are increasingly matching or even out-performing human cognition, this phenomenon has yet to be established. In this work, we found that similar to that of their biological counterparts, 1/f noise exists in artificial neural networks when trained on time series classification tasks. Additionally, we found that the activations of the neurons are the closest to 1/f noise when the neurons are highly utilized. Conversely, if the network is too large and many neurons are underutilized, the neuron activations deviate from 1/f noise patterns toward that of white noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
期刊最新文献
Bifurcation analysis of a two-neuron central pattern generator model for both oscillatory and convergent neuronal activities. Dynamics and control of two-dimensional discrete-time biological model incorporating weak Allee's effect. Evolution of trust in N-player trust games with loss assessment. Experimental studies of spiral wave teleportation in a light sensitive Belousov-Zhabotinsky system. Resilience of weighted networks with dynamical behavior against multi-node removal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1